TU Darmstadt / ULB / TUbiblio

Attention-based Information Retrieval Using Eye Tracker Data

Miller, Tristan ; Agne, Stefan (2005)
Attention-based Information Retrieval Using Eye Tracker Data.
doi: 10.1145/1088622.1088672
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We describe eFISK, an automated keyword extraction system which unobtrusively measures the user's attention in order to isolate and identify those areas of a written document the reader finds of greatest interest. Attention is measured by use of eye-tracking hardware consisting of a desk-mounted infrared camera which records various data about the user's eye. The keywords thus identified are subsequently used in the back end of an information retrieval system to help the user find other documents which contain information of interest to him. Unlike traditional IR techniques which compare documents simply on the basis of common terms withal, our system also accounts for the weights users implicitly attach to certain words or sections of the source document. We describe a task-based user study which compares the utility of standard relevance feedback techniques to the keywords and keyphrases discovered by our system in finding other relevant documents from a corpus.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2005
Autor(en): Miller, Tristan ; Agne, Stefan
Art des Eintrags: Bibliographie
Titel: Attention-based Information Retrieval Using Eye Tracker Data
Sprache: Englisch
Publikationsjahr: 2005
Buchtitel: Proceedings of the Third International Conference on Knowledge Capture (K-CAP05)
DOI: 10.1145/1088622.1088672
URL / URN: https://dx.doi.org/10.1145/1088622.1088672
Zugehörige Links:
Kurzbeschreibung (Abstract):

We describe eFISK, an automated keyword extraction system which unobtrusively measures the user's attention in order to isolate and identify those areas of a written document the reader finds of greatest interest. Attention is measured by use of eye-tracking hardware consisting of a desk-mounted infrared camera which records various data about the user's eye. The keywords thus identified are subsequently used in the back end of an information retrieval system to help the user find other documents which contain information of interest to him. Unlike traditional IR techniques which compare documents simply on the basis of common terms withal, our system also accounts for the weights users implicitly attach to certain words or sections of the source document. We describe a task-based user study which compares the utility of standard relevance feedback techniques to the keywords and keyphrases discovered by our system in finding other relevant documents from a corpus.

ID-Nummer: TUD-CS-2005-0040
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 31 Dez 2016 14:29
Letzte Änderung: 23 Aug 2018 11:41
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen