TU Darmstadt / ULB / TUbiblio

On the use of topic models for word completion

Wolf, Elisabeth ; Vembu, Shankar ; Miller, Tristan
Hrsg.: Salakoski, Tapio ; Ginter, Filip ; Pyysalo, Sampo ; Pahikkala, Tapio (2006)
On the use of topic models for word completion.
doi: 10.1007/11816508_50
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We investigate the use of topic models, such as probabilistic latent semantic analysis (PLSA) and latent Dirichlet allocation (LDA), for word completion tasks. The advantage of using these models for such an application is twofold. On the one hand, they allow us to exploit semantic or contextual information when predicting candidate words for completion. On the other hand, these probabilistic models have been found to outperform classical latent semantic analysis (LSA) for modeling text documents. We describe a word completion algorithm that takes into account the semantic context of the word being typed. We also present evaluation metrics to compare different models being used in our study. Our experiments validate our hypothesis of using probabilistic models for semantic analysis of text documents and their application in word completion tasks.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2006
Herausgeber: Salakoski, Tapio ; Ginter, Filip ; Pyysalo, Sampo ; Pahikkala, Tapio
Autor(en): Wolf, Elisabeth ; Vembu, Shankar ; Miller, Tristan
Art des Eintrags: Bibliographie
Titel: On the use of topic models for word completion
Sprache: Englisch
Publikationsjahr: 2006
Verlag: Springer-Verlag
Buchtitel: Proceedings of the 5th International Conference on Natural Language Processing (FinTAL 2006)
Reihe: Lecture Notes in Artificial Intelligence
Band einer Reihe: 4139
DOI: 10.1007/11816508_50
URL / URN: https://dx.doi.org/10.1007/11816508_50
Zugehörige Links:
Kurzbeschreibung (Abstract):

We investigate the use of topic models, such as probabilistic latent semantic analysis (PLSA) and latent Dirichlet allocation (LDA), for word completion tasks. The advantage of using these models for such an application is twofold. On the one hand, they allow us to exploit semantic or contextual information when predicting candidate words for completion. On the other hand, these probabilistic models have been found to outperform classical latent semantic analysis (LSA) for modeling text documents. We describe a word completion algorithm that takes into account the semantic context of the word being typed. We also present evaluation metrics to compare different models being used in our study. Our experiments validate our hypothesis of using probabilistic models for semantic analysis of text documents and their application in word completion tasks.

ID-Nummer: TUD-CS-2006-0039
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 31 Dez 2016 14:29
Letzte Änderung: 27 Sep 2018 21:08
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen