TU Darmstadt / ULB / TUbiblio

A Comparative Study of Feature Extraction Algorithms in Customer Reviews

Ferreira, Liliana ; Jakob, Niklas ; Gurevych, Iryna (2008)
A Comparative Study of Feature Extraction Algorithms in Customer Reviews.
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The paper systematically compares two feature extraction algorithms to mine product features commented on in customer reviews. The first approach [17] identifies candidate features by applying a set of POS patterns and pruning the candidate set based on the Log Likelihood Ratio test. The second approach [11] applies association rule mining for identifying frequent features and a heuristic based on the presence of sentiment terms for identifying infrequent features. We evaluate the performance of the algorithms on five product specific document collections regarding consumer electronic devices. We perform an analysis of errors and discuss advantages and limitations of the algorithms.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2008
Autor(en): Ferreira, Liliana ; Jakob, Niklas ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: A Comparative Study of Feature Extraction Algorithms in Customer Reviews
Sprache: Englisch
Publikationsjahr: August 2008
Buchtitel: Proceedings of the 2nd IEEE International Conference on Semantic Computing
URL / URN: https://ieeexplore.ieee.org/document/4597185
Zugehörige Links:
Kurzbeschreibung (Abstract):

The paper systematically compares two feature extraction algorithms to mine product features commented on in customer reviews. The first approach [17] identifies candidate features by applying a set of POS patterns and pruning the candidate set based on the Log Likelihood Ratio test. The second approach [11] applies association rule mining for identifying frequent features and a heuristic based on the presence of sentiment terms for identifying infrequent features. We evaluate the performance of the algorithms on five product specific document collections regarding consumer electronic devices. We perform an analysis of errors and discuss advantages and limitations of the algorithms.

Freie Schlagworte: Semantic Information Management;UKP_a_SIM;UKP_p_THESEUS
ID-Nummer: TUD-CS-2008-100
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 31 Dez 2016 14:29
Letzte Änderung: 24 Jan 2020 12:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen