TU Darmstadt / ULB / TUbiblio

Document Level Subjectivity Classification Experiments in DEFT'09 Challenge

Toprak, Cigdem ; Gurevych, Iryna (2009)
Document Level Subjectivity Classification Experiments in DEFT'09 Challenge.
Paris
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this paper, we present our supervised document level subjectivity classification experiments for English and French at the DEFT’09 Text Mining Challenge. We experiment with the word, POS, and lexicon-based features using an SVM classifier. Our word feature experiments (i) investigate the utility of the context information, and (ii) compare the binary and tf*idf feature representations in this task. We show that different class distributions favor different feature representations. Furthermore, on the English collection, we compare three, two of which are well-known, opinon lexicons at this task: the subjectivity clues from (Wiebe and Riloff, 2005; Wilson et al., 2005), SentiWordNet (Esuli and Sebastiani, 2006), and a list of verbs compiled from (Santini, 2007; Biber et al., 1999)1 . We show that, despite its limited coverage, the verb lexicon, consisting of 156 verbs, establishes relatively good results in English.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2009
Autor(en): Toprak, Cigdem ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Document Level Subjectivity Classification Experiments in DEFT'09 Challenge
Sprache: Englisch
Publikationsjahr: Juni 2009
Buchtitel: Proceedings of the DEFT'09 Text Mining Challenge
Veranstaltungsort: Paris
URL / URN: https://deft.limsi.fr/actes/2009/pdf/5_toprak.pdf
Kurzbeschreibung (Abstract):

In this paper, we present our supervised document level subjectivity classification experiments for English and French at the DEFT’09 Text Mining Challenge. We experiment with the word, POS, and lexicon-based features using an SVM classifier. Our word feature experiments (i) investigate the utility of the context information, and (ii) compare the binary and tf*idf feature representations in this task. We show that different class distributions favor different feature representations. Furthermore, on the English collection, we compare three, two of which are well-known, opinon lexicons at this task: the subjectivity clues from (Wiebe and Riloff, 2005; Wilson et al., 2005), SentiWordNet (Esuli and Sebastiani, 2006), and a list of verbs compiled from (Santini, 2007; Biber et al., 1999)1 . We show that, despite its limited coverage, the verb lexicon, consisting of 156 verbs, establishes relatively good results in English.

Freie Schlagworte: Educational Natural Language Processing;UKP_a_ENLP;UKP_p_SENTAL;subjectivity analysis, document classification
ID-Nummer: TUD-CS-2009-0218
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 31 Dez 2016 14:29
Letzte Änderung: 24 Jan 2020 12:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen