Szarvas, György ; Gurevych, Iryna (2010)
TUD: semantic relatedness for relation classification.
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
In this paper, we describe the system submitted by the team TUD to Task 8 at SemEval 2010. The challenge focused on the identification of semantic relations between pairs of nominals in sentences collected from the web. We applied maximum entropy classification using both lexical and syntactic features to describe the nominals and their context. In addition, we experimented with features describing the semantic relatedness (SR) between the target nominals and a set of clue words characteristic to the relations. Our best submission with SR features achieved 69.23% macro-averaged F-measure, providing 8.73% improvement over our baseline system. Thus, we think SR can serve as a natural way to incorporate external knowledge to relation classification.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2010 |
Autor(en): | Szarvas, György ; Gurevych, Iryna |
Art des Eintrags: | Bibliographie |
Titel: | TUD: semantic relatedness for relation classification |
Sprache: | Englisch |
Publikationsjahr: | Juli 2010 |
Buchtitel: | Proceedings of the 5th ACL SIGLEX Workshop on Semantic Evaluation |
URL / URN: | http://www.aclweb.org/anthology/S10-1046 |
Kurzbeschreibung (Abstract): | In this paper, we describe the system submitted by the team TUD to Task 8 at SemEval 2010. The challenge focused on the identification of semantic relations between pairs of nominals in sentences collected from the web. We applied maximum entropy classification using both lexical and syntactic features to describe the nominals and their context. In addition, we experimented with features describing the semantic relatedness (SR) between the target nominals and a set of clue words characteristic to the relations. Our best submission with SR features achieved 69.23% macro-averaged F-measure, providing 8.73% improvement over our baseline system. Thus, we think SR can serve as a natural way to incorporate external knowledge to relation classification. |
Freie Schlagworte: | Semantic Information Management;UKP_a_SIM;UKP_p_SIGMUND |
ID-Nummer: | TUD-CS-2010-0113 |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung |
Hinterlegungsdatum: | 31 Dez 2016 14:29 |
Letzte Änderung: | 24 Jan 2020 12:03 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |