TU Darmstadt / ULB / TUbiblio

Combining heterogeneous knowledge resources for improved distributional semantic models

Szarvas, György ; Zesch, Torsten ; Gurevych, Iryna
Hrsg.: Gelbukh, Alexander (2011)
Combining heterogeneous knowledge resources for improved distributional semantic models.
In: Proceedings of the 12th International Conference on Intelligent Text Processing and Computational Linguistics
Buchkapitel, Bibliographie

Kurzbeschreibung (Abstract)

The Explicit Semantic Analysis (ESA) model based on term cooccurrences in Wikipedia has been regarded as state-of-the-art semantic relatedness measure in the recent years. We provide an analysis of the important parameters of ESA using datasets in five different languages. Additionally, we propose the use of ESA with multiple lexical semantic resources thus exploiting multiple evidence of term cooccurrence to improve over the Wikipedia-based measure. Exploiting the improved robustness and coverage of the proposed combination, we report improved performance over single resources in word semantic relatedness, solving word choice problems, classification of semantic relations between nominals, and text similarity.

Typ des Eintrags: Buchkapitel
Erschienen: 2011
Herausgeber: Gelbukh, Alexander
Autor(en): Szarvas, György ; Zesch, Torsten ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Combining heterogeneous knowledge resources for improved distributional semantic models
Sprache: Englisch
Publikationsjahr: 2011
Verlag: Springer
Buchtitel: Proceedings of the 12th International Conference on Intelligent Text Processing and Computational Linguistics
Reihe: Lecture Notes in Computer Science
Band einer Reihe: 6608
URL / URN: https://www.springer.com/gp/book/9783642193996
Zugehörige Links:
Kurzbeschreibung (Abstract):

The Explicit Semantic Analysis (ESA) model based on term cooccurrences in Wikipedia has been regarded as state-of-the-art semantic relatedness measure in the recent years. We provide an analysis of the important parameters of ESA using datasets in five different languages. Additionally, we propose the use of ESA with multiple lexical semantic resources thus exploiting multiple evidence of term cooccurrence to improve over the Wikipedia-based measure. Exploiting the improved robustness and coverage of the proposed combination, we report improved performance over single resources in word semantic relatedness, solving word choice problems, classification of semantic relations between nominals, and text similarity.

Freie Schlagworte: UKP_p_ASC;UKP_p_SIGMUND
ID-Nummer: TUD-CS-2011-0069
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 31 Dez 2016 14:29
Letzte Änderung: 24 Jan 2020 12:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen