TU Darmstadt / ULB / TUbiblio

Using Distributional Similarity for Lexical Expansion in Knowledge-based Word Sense Disambiguation

Miller, Tristan ; Biemann, Chris ; Zesch, Torsten ; Gurevych, Iryna (2012)
Using Distributional Similarity for Lexical Expansion in Knowledge-based Word Sense Disambiguation.
Mumbai, India
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We explore the contribution of distributional information for purely knowledge-based word sense disambiguation. Specifically, we use a distributional thesaurus, computed from a large parsed corpus, for lexical expansion of context and sense information.This bridges the lexical gap that is seen as the major obstacle for word overlap–based approaches.We apply this mechanism to two traditional knowledge-based methods and show that distributional information significantly improves disambiguation results across several data sets.This improvement exceeds the state of the art for disambiguation without sense frequency information—a situation which is especially encountered with new domains or languages for which no sense-annotated corpus is available.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2012
Autor(en): Miller, Tristan ; Biemann, Chris ; Zesch, Torsten ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Using Distributional Similarity for Lexical Expansion in Knowledge-based Word Sense Disambiguation
Sprache: Englisch
Publikationsjahr: Dezember 2012
Buchtitel: Proceedings of the 24th International Conference on Computational Linguistics (COLING 2012)
Veranstaltungsort: Mumbai, India
URL / URN: http://aclweb.org/anthology/C/C12/C12-1109.pdf
Kurzbeschreibung (Abstract):

We explore the contribution of distributional information for purely knowledge-based word sense disambiguation. Specifically, we use a distributional thesaurus, computed from a large parsed corpus, for lexical expansion of context and sense information.This bridges the lexical gap that is seen as the major obstacle for word overlap–based approaches.We apply this mechanism to two traditional knowledge-based methods and show that distributional information significantly improves disambiguation results across several data sets.This improvement exceeds the state of the art for disambiguation without sense frequency information—a situation which is especially encountered with new domains or languages for which no sense-annotated corpus is available.

Freie Schlagworte: reviewed;UKP_p_SIDIM;Statistical Semantics;word sense disambiguation, distributional thesaurus, lexical expansion
ID-Nummer: TUD-CS-2012-0232
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Sprachtechnologie
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 31 Dez 2016 14:29
Letzte Änderung: 24 Jan 2020 12:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen