TU Darmstadt / ULB / TUbiblio

Automatic Identification of Novel Metaphoric Expressions

Do Dinh, Erik-Lân (2013)
Automatic Identification of Novel Metaphoric Expressions.
Technische Universität Darmstadt
Diplom- oder Magisterarbeit, Bibliographie

Kurzbeschreibung (Abstract)

Manually annotating novel metaphors in philosophical and historical texts is a difficult and time-consuming task, so any automated method would be welcome. In this work, we implement such a method for novel metaphor identification. The approach uses Gaussian mixture models, the parameters of which are estimated by expectation maximization. We seek to improve the results of this baseline by incorporating selectional preferences, whose violation can be indicative for metaphorical use of a term or phrase. As we intend to find only novel metaphorical expressions, we further refine the results by employing a large diachronic n-gram corpus. We find that incorporating selectional preferences and additional n-gram novelty filtering significantly improves on the baseline results. As an example application, the resulting classifications will then be presented in a web-based tool.

Typ des Eintrags: Diplom- oder Magisterarbeit
Erschienen: 2013
Autor(en): Do Dinh, Erik-Lân
Art des Eintrags: Bibliographie
Titel: Automatic Identification of Novel Metaphoric Expressions
Sprache: Englisch
Publikationsjahr: Juni 2013
Ort: Darmstadt
Veranstaltungsort: Darmstadt, Germany
URL / URN: https://download.hrz.tu-darmstadt.de/media/FB20/Dekanat/Publ...
Kurzbeschreibung (Abstract):

Manually annotating novel metaphors in philosophical and historical texts is a difficult and time-consuming task, so any automated method would be welcome. In this work, we implement such a method for novel metaphor identification. The approach uses Gaussian mixture models, the parameters of which are estimated by expectation maximization. We seek to improve the results of this baseline by incorporating selectional preferences, whose violation can be indicative for metaphorical use of a term or phrase. As we intend to find only novel metaphorical expressions, we further refine the results by employing a large diachronic n-gram corpus. We find that incorporating selectional preferences and additional n-gram novelty filtering significantly improves on the baseline results. As an example application, the resulting classifications will then be presented in a web-based tool.

Freie Schlagworte: UKP_a_LangTech4eHum
ID-Nummer: TUD-CS-2013-0216
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 31 Dez 2016 14:29
Letzte Änderung: 06 Nov 2019 14:41
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen