Do Dinh, Erik-Lân (2013)
Automatic Identification of Novel Metaphoric Expressions.
Technische Universität Darmstadt
Diplom- oder Magisterarbeit, Bibliographie
Kurzbeschreibung (Abstract)
Manually annotating novel metaphors in philosophical and historical texts is a difficult and time-consuming task, so any automated method would be welcome. In this work, we implement such a method for novel metaphor identification. The approach uses Gaussian mixture models, the parameters of which are estimated by expectation maximization. We seek to improve the results of this baseline by incorporating selectional preferences, whose violation can be indicative for metaphorical use of a term or phrase. As we intend to find only novel metaphorical expressions, we further refine the results by employing a large diachronic n-gram corpus. We find that incorporating selectional preferences and additional n-gram novelty filtering significantly improves on the baseline results. As an example application, the resulting classifications will then be presented in a web-based tool.
Typ des Eintrags: | Diplom- oder Magisterarbeit |
---|---|
Erschienen: | 2013 |
Autor(en): | Do Dinh, Erik-Lân |
Art des Eintrags: | Bibliographie |
Titel: | Automatic Identification of Novel Metaphoric Expressions |
Sprache: | Englisch |
Publikationsjahr: | Juni 2013 |
Ort: | Darmstadt |
Veranstaltungsort: | Darmstadt, Germany |
URL / URN: | https://download.hrz.tu-darmstadt.de/media/FB20/Dekanat/Publ... |
Kurzbeschreibung (Abstract): | Manually annotating novel metaphors in philosophical and historical texts is a difficult and time-consuming task, so any automated method would be welcome. In this work, we implement such a method for novel metaphor identification. The approach uses Gaussian mixture models, the parameters of which are estimated by expectation maximization. We seek to improve the results of this baseline by incorporating selectional preferences, whose violation can be indicative for metaphorical use of a term or phrase. As we intend to find only novel metaphorical expressions, we further refine the results by employing a large diachronic n-gram corpus. We find that incorporating selectional preferences and additional n-gram novelty filtering significantly improves on the baseline results. As an example application, the resulting classifications will then be presented in a web-based tool. |
Freie Schlagworte: | UKP_a_LangTech4eHum |
ID-Nummer: | TUD-CS-2013-0216 |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung |
Hinterlegungsdatum: | 31 Dez 2016 14:29 |
Letzte Änderung: | 06 Nov 2019 14:41 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |