TU Darmstadt / ULB / TUbiblio

Argumentation Mining in Persuasive Essays and Scientific Articles from the Discourse Structure Perspective

Stab, Christian ; Kirschner, Christian ; Eckle-Kohler, Judith ; Gurevych, Iryna
Hrsg.: Cabrio, Elena ; Villata, Serena ; Wyner, Adam (2014)
Argumentation Mining in Persuasive Essays and Scientific Articles from the Discourse Structure Perspective.
Bertinoro, Italy
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this paper, we analyze and discuss approaches to argumentation mining from the discourse structure perspective. We chose persuasive essays and scientific articles as our example domains. By analyzing several example arguments and providing an overview of previous work on argumentation mining, we derive important tasks that are currently not addressed by existing argumentation mining systems, most importantly, the identification of argumentation structures. We discuss the relation of this task to automated discourse analysis and describe preliminary results of two annotation studies focusing on the annotation of argumentation structure. Based on our findings, we derive three challenges for encouraging future research on argumentation mining.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2014
Herausgeber: Cabrio, Elena ; Villata, Serena ; Wyner, Adam
Autor(en): Stab, Christian ; Kirschner, Christian ; Eckle-Kohler, Judith ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Argumentation Mining in Persuasive Essays and Scientific Articles from the Discourse Structure Perspective
Sprache: Englisch
Publikationsjahr: Juli 2014
Verlag: CEUR-WS
Buchtitel: Proceedings of the Workshop on Frontiers and Connections between Argumentation Theory and Natural Language Processing
Veranstaltungsort: Bertinoro, Italy
URL / URN: http://ceur-ws.org/Vol-1341/paper5.pdf
Kurzbeschreibung (Abstract):

In this paper, we analyze and discuss approaches to argumentation mining from the discourse structure perspective. We chose persuasive essays and scientific articles as our example domains. By analyzing several example arguments and providing an overview of previous work on argumentation mining, we derive important tasks that are currently not addressed by existing argumentation mining systems, most importantly, the identification of argumentation structures. We discuss the relation of this task to automated discourse analysis and describe preliminary results of two annotation studies focusing on the annotation of argumentation structure. Based on our findings, we derive three challenges for encouraging future research on argumentation mining.

Freie Schlagworte: Knowledge Discovery in Scientific Literature;UKP_reviewed;UKP_a_ArMin
ID-Nummer: TUD-CS-2014-0879
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 31 Dez 2016 14:29
Letzte Änderung: 24 Jan 2020 12:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen