Matuschek, Michael ; Miller, Tristan ; Gurevych, Iryna
Hrsg.: Ruppenhofer, Josef ; Faaß, Gertrud (2014)
A Language-independent Sense Clustering Approach for Enhanced WSD.
Hildesheim, Germany
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
We present a method for clustering word senses of a lexical-semantic resource by mapping them to those of another sense inventory. This is a promising way of reducing polysemy in sense inventories and consequently improving word sense disambiguation performance. In contrast to previous approaches, we use Dijkstra-WSA, a parameterizable alignment algorithm which is largely resource- and language-agnostic. To demonstrate this, we apply our technique to GermaNet, the German equivalent to WordNet. The GermaNet sense clusterings we induce through alignments to various collaboratively constructed resources achieve a significant boost in accuracy, even though our method is far less complex and less dependent on language-specific knowledge than past approaches.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2014 |
Herausgeber: | Ruppenhofer, Josef ; Faaß, Gertrud |
Autor(en): | Matuschek, Michael ; Miller, Tristan ; Gurevych, Iryna |
Art des Eintrags: | Bibliographie |
Titel: | A Language-independent Sense Clustering Approach for Enhanced WSD |
Sprache: | Englisch |
Publikationsjahr: | Oktober 2014 |
Verlag: | Universitätsverlag Hildesheim |
Buchtitel: | Proceedings of the 12th Konferenz zur Verarbeitung natürlicher Sprache (KONVENS 2014) |
Veranstaltungsort: | Hildesheim, Germany |
URL / URN: | https://fileserver.ukp.informatik.tu-darmstadt.de/UKP_Webpag... |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | We present a method for clustering word senses of a lexical-semantic resource by mapping them to those of another sense inventory. This is a promising way of reducing polysemy in sense inventories and consequently improving word sense disambiguation performance. In contrast to previous approaches, we use Dijkstra-WSA, a parameterizable alignment algorithm which is largely resource- and language-agnostic. To demonstrate this, we apply our technique to GermaNet, the German equivalent to WordNet. The GermaNet sense clusterings we induce through alignments to various collaboratively constructed resources achieve a significant boost in accuracy, even though our method is far less complex and less dependent on language-specific knowledge than past approaches. |
Freie Schlagworte: | reviewed;UKP_a_LangTech4eHum |
ID-Nummer: | TUD-CS-2014-0878 |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung |
Hinterlegungsdatum: | 31 Dez 2016 14:29 |
Letzte Änderung: | 24 Jan 2020 12:03 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |