TU Darmstadt / ULB / TUbiblio

Token-Level Metaphor Detection using Neural Networks

Do Dinh, Erik-Lân ; Gurevych, Iryna (2016)
Token-Level Metaphor Detection using Neural Networks.
San Diego, CA, USA
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Automatic metaphor detection usually relies on various features, incorporating e.g. selectional preference violations or concreteness ratings to detect metaphors in text. These features rely on background corpora, hand-coded rules or additional, manually created resources, all specific to the language the system is being used on. We present a novel approach to metaphor detection using a neural network in combination with word embeddings, a method that has already proven to yield promising results for other natural language processing tasks. We show that foregoing manual feature engineering by solely relying on word embeddings trained on large corpora produces comparable results to other systems, while removing the need for additional resources.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2016
Autor(en): Do Dinh, Erik-Lân ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Token-Level Metaphor Detection using Neural Networks
Sprache: Englisch
Publikationsjahr: Juni 2016
Verlag: Association for Computational Linguistics
Buchtitel: Proceedings of The Fourth Workshop on Metaphor in NLP held in conjunction with NAACL 2016
Veranstaltungsort: San Diego, CA, USA
URL / URN: http://www.aclweb.org/anthology/W16-1104
Kurzbeschreibung (Abstract):

Automatic metaphor detection usually relies on various features, incorporating e.g. selectional preference violations or concreteness ratings to detect metaphors in text. These features rely on background corpora, hand-coded rules or additional, manually created resources, all specific to the language the system is being used on. We present a novel approach to metaphor detection using a neural network in combination with word embeddings, a method that has already proven to yield promising results for other natural language processing tasks. We show that foregoing manual feature engineering by solely relying on word embeddings trained on large corpora produces comparable results to other systems, while removing the need for additional resources.

Freie Schlagworte: Knowledge Discovery in Scientific Literature;UKP_reviewed;Metaphor,Classification,Neural Network,Word Embeddings
ID-Nummer: TUD-CS-2016-0075
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 31 Dez 2016 14:29
Letzte Änderung: 24 Jan 2020 12:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen