TU Darmstadt / ULB / TUbiblio

Which argument is more convincing? Analyzing and predicting convincingness of Web arguments using bidirectional LSTM

Habernal, Ivan ; Gurevych, Iryna (2016)
Which argument is more convincing? Analyzing and predicting convincingness of Web arguments using bidirectional LSTM.
Berlin, Germany
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

We propose a new task in the field of computational argumentation in which we investigate qualitative properties of Web arguments, namely their convincingness. We cast the problem as relation classification, where a pair of arguments having the same stance to the same prompt is judged. We annotate a large datasets of 16k pairs of arguments over 32 topics and investigate whether the relation "A is more convincing than B" exhibits properties of total ordering; these findings are used as global constraints for cleaning the crowdsourced data. We propose two tasks: (1) predicting which argument from an argument pair is more convincing and (2) ranking all arguments to the topic based on their convincingness. We experiment with feature-rich SVM and bidirectional LSTM and obtain 0.76-0.78 accuracy and 0.35-0.40 Spearman's correlation in a cross-topic evaluation. We release the newly created corpus UKPConvArg1 and the experimental software under open licenses.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2016
Autor(en): Habernal, Ivan ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Which argument is more convincing? Analyzing and predicting convincingness of Web arguments using bidirectional LSTM
Sprache: Englisch
Publikationsjahr: August 2016
Verlag: Association for Computational Linguistics
Buchtitel: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Veranstaltungsort: Berlin, Germany
URL / URN: http://www.aclweb.org/anthology/P16-1150
Zugehörige Links:
Kurzbeschreibung (Abstract):

We propose a new task in the field of computational argumentation in which we investigate qualitative properties of Web arguments, namely their convincingness. We cast the problem as relation classification, where a pair of arguments having the same stance to the same prompt is judged. We annotate a large datasets of 16k pairs of arguments over 32 topics and investigate whether the relation "A is more convincing than B" exhibits properties of total ordering; these findings are used as global constraints for cleaning the crowdsourced data. We propose two tasks: (1) predicting which argument from an argument pair is more convincing and (2) ranking all arguments to the topic based on their convincingness. We experiment with feature-rich SVM and bidirectional LSTM and obtain 0.76-0.78 accuracy and 0.35-0.40 Spearman's correlation in a cross-topic evaluation. We release the newly created corpus UKPConvArg1 and the experimental software under open licenses.

Freie Schlagworte: UKP_reviewed;UKP_a_ArMin
ID-Nummer: TUD-CS-2016-0104
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen
Hinterlegungsdatum: 31 Dez 2016 14:29
Letzte Änderung: 24 Jan 2020 12:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen