TU Darmstadt / ULB / TUbiblio

Interactive Data Analytics for the Humanities

Gurevych, Iryna ; Meyer, Christian M. ; Binnig, Carsten ; Fürnkranz, Johannes ; Kersting, Kristian ; Roth, Stefan ; Simpson, Edwin
Hrsg.: Gelbukh, Alexander (2018)
Interactive Data Analytics for the Humanities.
In: Computational Linguistics and Intelligent Text Processing: Proceedings of the 18th International Conference
doi: 10.1007/978-3-319-77113-7_41
Buchkapitel, Bibliographie

Kurzbeschreibung (Abstract)

In this vision paper, we argue that current solutions to data analytics are not suitable for complex tasks from the humanities, as they are agnostic of the user and focused on static, predefined tasks with large-scale benchmarks. Instead, we believe that the human must be put into the loop to address small data scenarios that require expert domain knowledge and fluid, incrementally defined tasks, which are common for many humanities use cases. Besides the main challenges, we discuss existing and urgently required solutions to interactive data acquisition, model development, model interpretation, and system support for interactive data analytics. In the envisioned interactive systems, human users not only provide annotations to a machine learner, but train a model by using the system and demonstrating the task. The learning system will actively query the user for feedback, refine its model in real-time, and is able to explain its decisions. Our vision links natural language processing research with recent advances in machine learning, computer vision, and data management systems, as realizing this vision relies on combining expertise from all of these scientific fields.

Typ des Eintrags: Buchkapitel
Erschienen: 2018
Herausgeber: Gelbukh, Alexander
Autor(en): Gurevych, Iryna ; Meyer, Christian M. ; Binnig, Carsten ; Fürnkranz, Johannes ; Kersting, Kristian ; Roth, Stefan ; Simpson, Edwin
Art des Eintrags: Bibliographie
Titel: Interactive Data Analytics for the Humanities
Sprache: Englisch
Publikationsjahr: 24 Oktober 2018
Ort: Berlin/Heidelberg
Verlag: Springer
Buchtitel: Computational Linguistics and Intelligent Text Processing: Proceedings of the 18th International Conference
Reihe: Lecture Notes in Computer Science
Band einer Reihe: 10761
DOI: 10.1007/978-3-319-77113-7_41
URL / URN: https://link.springer.com/chapter/10.1007%2F978-3-319-77113-...
Zugehörige Links:
Kurzbeschreibung (Abstract):

In this vision paper, we argue that current solutions to data analytics are not suitable for complex tasks from the humanities, as they are agnostic of the user and focused on static, predefined tasks with large-scale benchmarks. Instead, we believe that the human must be put into the loop to address small data scenarios that require expert domain knowledge and fluid, incrementally defined tasks, which are common for many humanities use cases. Besides the main challenges, we discuss existing and urgently required solutions to interactive data acquisition, model development, model interpretation, and system support for interactive data analytics. In the envisioned interactive systems, human users not only provide annotations to a machine learner, but train a model by using the system and demonstrating the task. The learning system will actively query the user for feedback, refine its model in real-time, and is able to explain its decisions. Our vision links natural language processing research with recent advances in machine learning, computer vision, and data management systems, as realizing this vision relies on combining expertise from all of these scientific fields.

Freie Schlagworte: invited;UKP_invited
ID-Nummer: TUD-CS-2017-0067
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen
Hinterlegungsdatum: 21 Mär 2017 16:16
Letzte Änderung: 24 Jan 2020 12:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen