TU Darmstadt / ULB / TUbiblio

LSDSem 2017: Exploring Data Generation Methods for the Story Cloze Test

Bugert, Michael ; Puzikov, Yevgeniy ; Rücklé, Andreas ; Eckle-Kohler, Judith ; Martin, Teresa ; Martínez Cámara, Eugenio ; Sorokin, Daniil ; Peyrard, Maxime ; Gurevych, Iryna (2017)
LSDSem 2017: Exploring Data Generation Methods for the Story Cloze Test.
The 2nd Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics. Valencia, Spain (03.04.2017-04.04.2017)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The Story Cloze test is a recent effort in providing a common test scenario for text understanding systems. As part of the LSDSem 2017 shared task, we present a system based on a deep learning architecture combined with a rich set of manually-crafted linguistic features. The system outperforms all known baselines for the task, suggesting that the chosen approach is promising. We additionally present two methods for generating further training data based on stories from the ROCStories corpus. Our system and generated data are publicly available on GitHub.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2017
Autor(en): Bugert, Michael ; Puzikov, Yevgeniy ; Rücklé, Andreas ; Eckle-Kohler, Judith ; Martin, Teresa ; Martínez Cámara, Eugenio ; Sorokin, Daniil ; Peyrard, Maxime ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: LSDSem 2017: Exploring Data Generation Methods for the Story Cloze Test
Sprache: Englisch
Publikationsjahr: April 2017
Verlag: Association for Computational Linguistics
Buchtitel: Proceedings of the 2nd Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics
Veranstaltungstitel: The 2nd Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics
Veranstaltungsort: Valencia, Spain
Veranstaltungsdatum: 03.04.2017-04.04.2017
URL / URN: http://aclweb.org/anthology/W17-0908
Zugehörige Links:
Kurzbeschreibung (Abstract):

The Story Cloze test is a recent effort in providing a common test scenario for text understanding systems. As part of the LSDSem 2017 shared task, we present a system based on a deep learning architecture combined with a rich set of manually-crafted linguistic features. The system outperforms all known baselines for the task, suggesting that the chosen approach is promising. We additionally present two methods for generating further training data based on stories from the ROCStories corpus. Our system and generated data are publicly available on GitHub.

Freie Schlagworte: UKP_p_DIP;UKP_p_QAEduInf;UKP_reviewed;UKP_a_DLinNLP;UKP_a_LSRA;AIPHES
ID-Nummer: TUD-CS-2017-0040
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen
Hinterlegungsdatum: 21 Feb 2017 20:05
Letzte Änderung: 24 Jan 2020 12:03
PPN:
Projekte: AIPHES, UKP_p_DIP, UKP_p_QAUduInf
Sponsoren: German Research Foundation, grant No.GU 798/17-1, German Research Foundation, research training group “Adaptive Preparation of Information form Heterogeneous Sources” (AIPHES), GRK 1994/1, QA-EduInf project, grants No. GU 798/18-1 and No. RI 803/12-1
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen