TU Darmstadt / ULB / TUbiblio

Joint Optimization of User-desired Content in Multi-document Summaries by Learning from User Feedback

P. V. S., Avinesh ; Meyer, Christian M. (2017)
Joint Optimization of User-desired Content in Multi-document Summaries by Learning from User Feedback.
Vancouver, Canada
doi: 10.18653/v1/P17-1124
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this paper, we propose an extractive multi-document summarization (MDS) system using joint optimization and active learning for content selection grounded in user feedback. Our method interactively obtains user feedback to gradually improve the results of a state-of-the-art integer linear programming (ILP) framework for MDS. Our methods complement fully automatic methods in producing high-quality summaries with a minimum number of iterations and feedbacks. We conduct multiple simulation-based experiments and analyze the effect of feedback-based concept selection in the ILP setup in order to maximize the user-desired content in the summary.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2017
Autor(en): P. V. S., Avinesh ; Meyer, Christian M.
Art des Eintrags: Bibliographie
Titel: Joint Optimization of User-desired Content in Multi-document Summaries by Learning from User Feedback
Sprache: Englisch
Publikationsjahr: Juli 2017
Verlag: Association for Computational Linguistics
Buchtitel: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (ACL 2017)
Band einer Reihe: Volume 1: Long Paper
Veranstaltungsort: Vancouver, Canada
DOI: 10.18653/v1/P17-1124
URL / URN: http://www.aclweb.org/anthology/P17-1124
Kurzbeschreibung (Abstract):

In this paper, we propose an extractive multi-document summarization (MDS) system using joint optimization and active learning for content selection grounded in user feedback. Our method interactively obtains user feedback to gradually improve the results of a state-of-the-art integer linear programming (ILP) framework for MDS. Our methods complement fully automatic methods in producing high-quality summaries with a minimum number of iterations and feedbacks. We conduct multiple simulation-based experiments and analyze the effect of feedback-based concept selection in the ILP setup in order to maximize the user-desired content in the summary.

Freie Schlagworte: UKP_a_WALL;UKP_reviewed;AIPHES_corpus;AIPHES_area_d2
ID-Nummer: TUD-CS-2017-0077
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen
Hinterlegungsdatum: 03 Apr 2017 07:44
Letzte Änderung: 19 Aug 2021 10:53
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen