TU Darmstadt / ULB / TUbiblio

End-to-End Non-Factoid Question Answering with an Interactive Visualization of Neural Attention Weights

Rücklé, Andreas ; Gurevych, Iryna (2017)
End-to-End Non-Factoid Question Answering with an Interactive Visualization of Neural Attention Weights.
Vancouver, Canada
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Advanced attention mechanisms are an important part of successful neural network approaches for non-factoid answer selection because they allow the models to focus on few important segments within rather long answer texts. Analyzing attention mechanisms is thus crucial for understanding strengths and weaknesses of particular models. We present an extensible, highly modular service architecture that enables the transformation of neural network models for non-factoid answer selection into fully featured end-to-end question answering systems. The primary objective  of our system is to enable researchers a way to interactively explore and compare attention-based neural networks for answer selection. Our interactive user interface helps researchers to better understand the capabilities of the different approaches and can aid qualitative analyses.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2017
Autor(en): Rücklé, Andreas ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: End-to-End Non-Factoid Question Answering with an Interactive Visualization of Neural Attention Weights
Sprache: Englisch
Publikationsjahr: August 2017
Verlag: Association for Computational Linguistics
Buchtitel: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics-System Demonstrations (ACL 2017)
Band einer Reihe: 4: System Demonstrations
Veranstaltungsort: Vancouver, Canada
URL / URN: http://aclweb.org/anthology/P17-4004
Zugehörige Links:
Kurzbeschreibung (Abstract):

Advanced attention mechanisms are an important part of successful neural network approaches for non-factoid answer selection because they allow the models to focus on few important segments within rather long answer texts. Analyzing attention mechanisms is thus crucial for understanding strengths and weaknesses of particular models. We present an extensible, highly modular service architecture that enables the transformation of neural network models for non-factoid answer selection into fully featured end-to-end question answering systems. The primary objective  of our system is to enable researchers a way to interactively explore and compare attention-based neural networks for answer selection. Our interactive user interface helps researchers to better understand the capabilities of the different approaches and can aid qualitative analyses.

Freie Schlagworte: UKP_a_DLinNLP;UKP_p_QAEduInf
ID-Nummer: TUD-CS-2017-0078
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 03 Apr 2017 09:58
Letzte Änderung: 24 Jan 2020 12:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen