TU Darmstadt / ULB / TUbiblio

Integrating Deep Linguistic Features in Factuality Prediction over Unified Datasets

Stanovsky, Gabriel ; Eckle-Kohler, Judith ; Puzikov, Yevgeniy ; Dagan, Ido ; Gurevych, Iryna (2017)
Integrating Deep Linguistic Features in Factuality Prediction over Unified Datasets.
The 55th Annual Meeting of the Association for Computational Linguistics (ACL 2017). Vancouver, Canada (30.07.2017-04.08.2017)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Previous models for the assessment of commitment towards a predicate in a sentence (also known as factuality prediction) were trained and tested against a specific annotated dataset, subsequently limiting the generality of their results. In this work we propose an intuitive method for mapping three previously annotated corpora onto a single factuality scale, thereby enabling models to be tested across these corpora. In addition, we design a novel model for factuality prediction by first extending a previous rule-based factuality prediction system and applying it over an abstraction of dependency trees, and then using the output of this system in a supervised classifier. Our model which we will make publicly available outperforms previous methods on all three datasets.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2017
Autor(en): Stanovsky, Gabriel ; Eckle-Kohler, Judith ; Puzikov, Yevgeniy ; Dagan, Ido ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Integrating Deep Linguistic Features in Factuality Prediction over Unified Datasets
Sprache: Englisch
Publikationsjahr: August 2017
Verlag: Association for Computational Linguistics
Buchtitel: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (ACL 2017)
Band einer Reihe: Volume 2: Short Papers
Veranstaltungstitel: The 55th Annual Meeting of the Association for Computational Linguistics (ACL 2017)
Veranstaltungsort: Vancouver, Canada
Veranstaltungsdatum: 30.07.2017-04.08.2017
URL / URN: http://aclweb.org/anthology/P17-2056
Zugehörige Links:
Kurzbeschreibung (Abstract):

Previous models for the assessment of commitment towards a predicate in a sentence (also known as factuality prediction) were trained and tested against a specific annotated dataset, subsequently limiting the generality of their results. In this work we propose an intuitive method for mapping three previously annotated corpora onto a single factuality scale, thereby enabling models to be tested across these corpora. In addition, we design a novel model for factuality prediction by first extending a previous rule-based factuality prediction system and applying it over an abstraction of dependency trees, and then using the output of this system in a supervised classifier. Our model which we will make publicly available outperforms previous methods on all three datasets.

Freie Schlagworte: UKP_p_DIP;AIPHES
ID-Nummer: TUD-CS-2017-0071
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen
Hinterlegungsdatum: 31 Mär 2017 14:17
Letzte Änderung: 24 Jan 2020 12:03
PPN:
Projekte: AIPHES, UKP_p_DIP
Sponsoren: German Research Foundation (DFG), grant No.GU 798/17-1
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen