Sorokin, Daniil ; Gurevych, Iryna (2017)
Context-Aware Representations for Knowledge Base Relation Extraction.
Copenhagen, Denmark
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
We demonstrate that for sentence-level relation extraction it is beneficial to consider other relations in the sentential context while predicting the target relation. Our architecture uses an LSTM-based encoder to jointly learn representations for all relations in a single sentence. We combine the context representations with an attention mechanism to make the final prediction. Compared to a baseline system, our approach results in an average error reduction of 24% on a held-out set of relations.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2017 |
Autor(en): | Sorokin, Daniil ; Gurevych, Iryna |
Art des Eintrags: | Bibliographie |
Titel: | Context-Aware Representations for Knowledge Base Relation Extraction |
Sprache: | Englisch |
Publikationsjahr: | September 2017 |
Verlag: | Association for Computational Linguistics |
Buchtitel: | Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP) |
Veranstaltungsort: | Copenhagen, Denmark |
URL / URN: | http://aclweb.org/anthology/D17-1188 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | We demonstrate that for sentence-level relation extraction it is beneficial to consider other relations in the sentential context while predicting the target relation. Our architecture uses an LSTM-based encoder to jointly learn representations for all relations in a single sentence. We combine the context representations with an attention mechanism to make the final prediction. Compared to a baseline system, our approach results in an average error reduction of 24% on a held-out set of relations. |
Freie Schlagworte: | UKP_a_DLinNLP;UKP_p_QAEduInf;reviewed;UKP_a_LSRA;UKP_reviewed |
ID-Nummer: | TUD-CS-2017-0119 |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung DFG-Graduiertenkollegs DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen |
Hinterlegungsdatum: | 31 Mai 2017 14:28 |
Letzte Änderung: | 24 Jan 2020 12:03 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |