Rücklé, Andreas ; Gurevych, Iryna (2017)
Real-Time News Summarization with Adaptation to Media Attention.
Varna, Bulgaria
doi: 10.26615/978-954-452-049-6_079
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
Real-time summarization of news events (RTS) allows persons to stay up-to-date on important topics that develop over time. With the occurrence of major sub-events, media attention increases and a large number of news articles are published. We propose a summarization approach that detects such changes and selects a suitable summarization configuration at run-time. In particular, at times with high media attention, our approach exploits the redundancy in content to produce a more precise summary and avoid emitting redundant information. We find that our approach significantly outperforms a strong non-adaptive RTS baseline in terms of the emitted summary updates and achieves the best results on a recent web-scale dataset. It can successfully be applied to a different real-world dataset without requiring additional modifications.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2017 |
Autor(en): | Rücklé, Andreas ; Gurevych, Iryna |
Art des Eintrags: | Bibliographie |
Titel: | Real-Time News Summarization with Adaptation to Media Attention |
Sprache: | Englisch |
Publikationsjahr: | September 2017 |
Verlag: | Association for Computational Linguistics |
Buchtitel: | Proceedings of the 11th Conference on Recent Advances in Natural Language Processing (RANLP 2017) |
Veranstaltungsort: | Varna, Bulgaria |
DOI: | 10.26615/978-954-452-049-6_079 |
URL / URN: | https://doi.org/10.26615/978-954-452-049-6_079 |
Kurzbeschreibung (Abstract): | Real-time summarization of news events (RTS) allows persons to stay up-to-date on important topics that develop over time. With the occurrence of major sub-events, media attention increases and a large number of news articles are published. We propose a summarization approach that detects such changes and selects a suitable summarization configuration at run-time. In particular, at times with high media attention, our approach exploits the redundancy in content to produce a more precise summary and avoid emitting redundant information. We find that our approach significantly outperforms a strong non-adaptive RTS baseline in terms of the emitted summary updates and achieves the best results on a recent web-scale dataset. It can successfully be applied to a different real-world dataset without requiring additional modifications. |
Freie Schlagworte: | UKP_p_QAEduInf |
ID-Nummer: | TUD-CS-2017-0181 |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung |
Hinterlegungsdatum: | 11 Jul 2017 19:26 |
Letzte Änderung: | 24 Jan 2020 12:03 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |