TU Darmstadt / ULB / TUbiblio

Real-Time News Summarization with Adaptation to Media Attention

Rücklé, Andreas ; Gurevych, Iryna (2017)
Real-Time News Summarization with Adaptation to Media Attention.
Varna, Bulgaria
doi: 10.26615/978-954-452-049-6_079
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Real-time summarization of news events (RTS) allows persons to stay up-to-date on important topics that develop over time. With the occurrence of major sub-events, media attention increases and a large number of news articles are published. We propose a summarization approach that detects such changes and selects a suitable summarization configuration at run-time. In particular, at times with high media attention, our approach exploits the redundancy in content to produce a more precise summary and avoid emitting redundant information. We find that our approach significantly outperforms a strong non-adaptive RTS baseline in terms of the emitted summary updates and achieves the best results on a recent web-scale dataset. It can successfully be applied to a different real-world dataset without requiring additional modifications.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2017
Autor(en): Rücklé, Andreas ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Real-Time News Summarization with Adaptation to Media Attention
Sprache: Englisch
Publikationsjahr: September 2017
Verlag: Association for Computational Linguistics
Buchtitel: Proceedings of the 11th Conference on Recent Advances in Natural Language Processing (RANLP 2017)
Veranstaltungsort: Varna, Bulgaria
DOI: 10.26615/978-954-452-049-6_079
URL / URN: https://doi.org/10.26615/978-954-452-049-6_079
Kurzbeschreibung (Abstract):

Real-time summarization of news events (RTS) allows persons to stay up-to-date on important topics that develop over time. With the occurrence of major sub-events, media attention increases and a large number of news articles are published. We propose a summarization approach that detects such changes and selects a suitable summarization configuration at run-time. In particular, at times with high media attention, our approach exploits the redundancy in content to produce a more precise summary and avoid emitting redundant information. We find that our approach significantly outperforms a strong non-adaptive RTS baseline in terms of the emitted summary updates and achieves the best results on a recent web-scale dataset. It can successfully be applied to a different real-world dataset without requiring additional modifications.

Freie Schlagworte: UKP_p_QAEduInf
ID-Nummer: TUD-CS-2017-0181
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 11 Jul 2017 19:26
Letzte Änderung: 24 Jan 2020 12:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen