TU Darmstadt / ULB / TUbiblio

Reporting Score Distributions Makes a Difference: Performance Study of LSTM-networks for Sequence Tagging

Reimers, Nils ; Gurevych, Iryna (2017)
Reporting Score Distributions Makes a Difference: Performance Study of LSTM-networks for Sequence Tagging.
Copenhagen, Denmark
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this paper we show that reporting a single performance score is insufficient to compare non-deterministic approaches. We demonstrate this for common sequence tagging tasks that the seed value for the random number generator can result in statistically significant (p < 10^{-4}) differences for state-of-the-art systems. For two recent systems for NER, we observe an absolute difference of one percentage point F1-score depending on the selected seed value, making these systems perceived either as state-of-the-art or mediocre. Instead of publishing and reporting single performance scores, we propose to compare score distributions based on multiple executions. Based on the evaluation of 50.000 LSTM-networks for five sequence tagging tasks, we present network architectures that perform superior as well as produce results with higher stability on unseen data.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2017
Autor(en): Reimers, Nils ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Reporting Score Distributions Makes a Difference: Performance Study of LSTM-networks for Sequence Tagging
Sprache: Englisch
Publikationsjahr: September 2017
Buchtitel: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP)
Veranstaltungsort: Copenhagen, Denmark
URL / URN: http://aclweb.org/anthology/D17-1035
Zugehörige Links:
Kurzbeschreibung (Abstract):

In this paper we show that reporting a single performance score is insufficient to compare non-deterministic approaches. We demonstrate this for common sequence tagging tasks that the seed value for the random number generator can result in statistically significant (p < 10^{-4}) differences for state-of-the-art systems. For two recent systems for NER, we observe an absolute difference of one percentage point F1-score depending on the selected seed value, making these systems perceived either as state-of-the-art or mediocre. Instead of publishing and reporting single performance scores, we propose to compare score distributions based on multiple executions. Based on the evaluation of 50.000 LSTM-networks for five sequence tagging tasks, we present network architectures that perform superior as well as produce results with higher stability on unseen data.

ID-Nummer: TUD-CS-2017-0150
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen
Hinterlegungsdatum: 04 Jul 2017 09:53
Letzte Änderung: 24 Jan 2020 12:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen