TU Darmstadt / ULB / TUbiblio

End-to-end Representation Learning for Question Answering with Weak Supervision

Sorokin, Daniil ; Gurevych, Iryna (2017)
End-to-end Representation Learning for Question Answering with Weak Supervision.
Portoroz, Slovenia
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this paper we present a factoid question answering system for participation in Task 4 of the QALD-7 shared task. Our system is an end-to-end neural architecture for learning a semantic representation of the input question. It iteratively generates representations and uses a convolutional neural network (CNN) model to score them at each step. We take the semantic representation with the highest final score and execute it against Wikidata to retrieve the answers. We show on the Task 4 data set that our system is able to successfully generalize to new data.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2017
Autor(en): Sorokin, Daniil ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: End-to-end Representation Learning for Question Answering with Weak Supervision
Sprache: Englisch
Publikationsjahr: Oktober 2017
Verlag: Springer, Cham
Buchtitel: Semantic Web Challenges: 4th SemWebEval Challenge at ESWC 2017
Reihe: Communications in Computer and Information Science
Band einer Reihe: 769
Veranstaltungsort: Portoroz, Slovenia
URL / URN: https://link.springer.com/chapter/10.1007%2F978-3-319-69146-...
Zugehörige Links:
Kurzbeschreibung (Abstract):

In this paper we present a factoid question answering system for participation in Task 4 of the QALD-7 shared task. Our system is an end-to-end neural architecture for learning a semantic representation of the input question. It iteratively generates representations and uses a convolutional neural network (CNN) model to score them at each step. We take the semantic representation with the highest final score and execute it against Wikidata to retrieve the answers. We show on the Task 4 data set that our system is able to successfully generalize to new data.

Freie Schlagworte: UKP_reviewed;UKP_p_QAEduInf;reviewed;UKP_a_DLinNLP;UKP_a_LSRA
ID-Nummer: TUD-CS-2017-0113
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 1994 Adaptive Informationsaufbereitung aus heterogenen Quellen
Hinterlegungsdatum: 23 Mai 2017 16:26
Letzte Änderung: 24 Jan 2020 12:03
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen