TU Darmstadt / ULB / TUbiblio

Expert Knowledge for Contextualized Warnings

Bartsch, Steffen ; Volkamer, Melanie (2014)
Expert Knowledge for Contextualized Warnings.
Report, Bibliographie

Kurzbeschreibung (Abstract)

Users are bothered by too many security warnings in a vari- ety of applications. To reduce the number of unnecessary warnings, de- velopers cannot continue to report technical security problems. Instead, they need to consider the actual risks of the context for the decision of whether and how to warn – contextualized warnings. For this risk assess- ment, developers need to encode expert knowledge. Given the number and complexity of the risks – for example, in Web browsing –, eliciting and encoding the expert knowledge is challenging. In this paper, we pro- pose a holistic methodology for an abstract risk assessment that builds upon prior concepts from risk management, such as decision trees. The result of the methodology is an abstract risk model – a model to as- sess the risk for the concrete context. In a case study, we show how this methodology can be applied to warnings in Web browsers.

Typ des Eintrags: Report
Erschienen: 2014
Autor(en): Bartsch, Steffen ; Volkamer, Melanie
Art des Eintrags: Bibliographie
Titel: Expert Knowledge for Contextualized Warnings
Sprache: Englisch
Publikationsjahr: Mai 2014
Zugehörige Links:
Kurzbeschreibung (Abstract):

Users are bothered by too many security warnings in a vari- ety of applications. To reduce the number of unnecessary warnings, de- velopers cannot continue to report technical security problems. Instead, they need to consider the actual risks of the context for the decision of whether and how to warn – contextualized warnings. For this risk assess- ment, developers need to encode expert knowledge. Given the number and complexity of the risks – for example, in Web browsing –, eliciting and encoding the expert knowledge is challenging. In this paper, we pro- pose a holistic methodology for an abstract risk assessment that builds upon prior concepts from risk management, such as decision trees. The result of the methodology is an abstract risk model – a model to as- sess the risk for the concrete context. In a case study, we show how this methodology can be applied to warnings in Web browsers.

Freie Schlagworte: Security, Usability and Society;Secure Data
ID-Nummer: TUD-CS-2014-0099
Fachbereich(e)/-gebiet(e): LOEWE > LOEWE-Zentren > CASED – Center for Advanced Security Research Darmstadt
20 Fachbereich Informatik > SECUSO - Security, Usability and Society
20 Fachbereich Informatik > Theoretische Informatik - Kryptographie und Computeralgebra
Profilbereiche > Cybersicherheit (CYSEC)
LOEWE > LOEWE-Zentren
20 Fachbereich Informatik
Profilbereiche
LOEWE
Hinterlegungsdatum: 28 Jul 2016 18:35
Letzte Änderung: 30 Mai 2018 12:53
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen