TU Darmstadt / ULB / TUbiblio

Isomeron: Code Randomization Resilient to (Just-In-Time) Return-Oriented Programming

Davi, Lucas and Liebchen, Christopher and Sadeghi, Ahmad-Reza and Snow, Kevin and Monrose, Fabian (2015):
Isomeron: Code Randomization Resilient to (Just-In-Time) Return-Oriented Programming.
In: 22nd Annual Network & Distributed System Security Symposium (NDSS), [Conference or Workshop Item]

Abstract

Until recently, it was widely believed that code randomization (such as fine-grained ASLR) can effectively mitigate code reuse attacks. However, a recent attack strategy, dubbed just-in-time return oriented programming (JIT-ROP), circumvents code randomization by disclosing the (randomized) content of many memory pages at runtime. In order to remedy this situation, new and improved code randomization defenses have been proposed.

The contribution of this paper is twofold: first, we conduct a security analysis of a recently proposed fine-grained ASLR scheme that aims at mitigating JIT-ROP based on hiding direct code references in branch instructions. In particular, we demonstrate its weaknesses by constructing a novel JIT-ROP attack that is solely based on exploiting code references residing on the stack and heap. Our attack stresses that designing code randomization schemes resilient to memory disclosure is highly challenging. Second, we present a new and hybrid defense approach, dubbed Isomeron, that combines code randomization with execution-path randomization to mitigate conventional ROP and JIT-ROP attacks. Our reference implementation of Isomeron neither requires source code nor a static analysis phase. We evaluated its efficiency based on SPEC benchmarks and discuss its effectiveness against various kinds of code reuse attacks.

Item Type: Conference or Workshop Item
Erschienen: 2015
Creators: Davi, Lucas and Liebchen, Christopher and Sadeghi, Ahmad-Reza and Snow, Kevin and Monrose, Fabian
Title: Isomeron: Code Randomization Resilient to (Just-In-Time) Return-Oriented Programming
Language: German
Abstract:

Until recently, it was widely believed that code randomization (such as fine-grained ASLR) can effectively mitigate code reuse attacks. However, a recent attack strategy, dubbed just-in-time return oriented programming (JIT-ROP), circumvents code randomization by disclosing the (randomized) content of many memory pages at runtime. In order to remedy this situation, new and improved code randomization defenses have been proposed.

The contribution of this paper is twofold: first, we conduct a security analysis of a recently proposed fine-grained ASLR scheme that aims at mitigating JIT-ROP based on hiding direct code references in branch instructions. In particular, we demonstrate its weaknesses by constructing a novel JIT-ROP attack that is solely based on exploiting code references residing on the stack and heap. Our attack stresses that designing code randomization schemes resilient to memory disclosure is highly challenging. Second, we present a new and hybrid defense approach, dubbed Isomeron, that combines code randomization with execution-path randomization to mitigate conventional ROP and JIT-ROP attacks. Our reference implementation of Isomeron neither requires source code nor a static analysis phase. We evaluated its efficiency based on SPEC benchmarks and discuss its effectiveness against various kinds of code reuse attacks.

Title of Book: 22nd Annual Network & Distributed System Security Symposium (NDSS)
Uncontrolled Keywords: ICRI-SC;Secure Things;S2;Solutions
Divisions: 20 Department of Computer Science
20 Department of Computer Science > System Security Lab
DFG-Collaborative Research Centres (incl. Transregio)
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres
Profile Areas
Profile Areas > Cybersecurity (CYSEC)
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > CASED – Center for Advanced Security Research Darmstadt
DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1119: CROSSING – Cryptography-Based Security Solutions: Enabling Trust in New and Next Generation Computing Environments
Date Deposited: 04 Aug 2016 10:13
Identification Number: TUD-CS-2015-0006
Related URLs:
Export:
Suche nach Titel in: TUfind oder in Google
Send an inquiry Send an inquiry

Options (only for editors)

View Item View Item