Bronstein, L. ; Koeppl, H. (2018)
Marginal process framework: A model reduction tool for Markov jump processes.
In: Physical Review E, 97 (6)
doi: 10.1103/PhysRevE.97.062147
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Markov jump process models have many applications across science. Often, these models are defined on a state-space of product form and only one of the components of the process is of direct interest. In this paper, we extend the marginal process framework, which provides a marginal description of the component of interest, to the case of fully coupled processes. We use entropic matching to obtain a finite-dimensional approximation of the filtering equation which governs the transition rates of the marginal process. The resulting equations can be seen as a combination of two projection operations applied to the full master equation, so that we obtain a principled model reduction framework. We demonstrate the resulting reduced description on the totally asymmetric exclusion process. An important class of Markov jump processes are stochastic reaction networks, which have applications in chemical and biomolecular kinetics, ecological models and models of social networks. We obtain a particularly simple instantiation of the marginal process framework for mass-action systems by using product-Poisson distributions for the approximate solution of the filtering equations. We investigate the resulting approximate marginal process analytically and numerically.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2018 |
Autor(en): | Bronstein, L. ; Koeppl, H. |
Art des Eintrags: | Bibliographie |
Titel: | Marginal process framework: A model reduction tool for Markov jump processes |
Sprache: | Englisch |
Publikationsjahr: | 26 Juni 2018 |
Verlag: | American Physical Society |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Physical Review E |
Jahrgang/Volume einer Zeitschrift: | 97 |
(Heft-)Nummer: | 6 |
DOI: | 10.1103/PhysRevE.97.062147 |
URL / URN: | https://journals.aps.org/pre/abstract/10.1103/PhysRevE.97.06... |
Kurzbeschreibung (Abstract): | Markov jump process models have many applications across science. Often, these models are defined on a state-space of product form and only one of the components of the process is of direct interest. In this paper, we extend the marginal process framework, which provides a marginal description of the component of interest, to the case of fully coupled processes. We use entropic matching to obtain a finite-dimensional approximation of the filtering equation which governs the transition rates of the marginal process. The resulting equations can be seen as a combination of two projection operations applied to the full master equation, so that we obtain a principled model reduction framework. We demonstrate the resulting reduced description on the totally asymmetric exclusion process. An important class of Markov jump processes are stochastic reaction networks, which have applications in chemical and biomolecular kinetics, ecological models and models of social networks. We obtain a particularly simple instantiation of the marginal process framework for mass-action systems by using product-Poisson distributions for the approximate solution of the filtering equations. We investigate the resulting approximate marginal process analytically and numerically. |
Freie Schlagworte: | Markov jump processes; marginal process framework; model reduction tool; asymmetric exclusion process; networks |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik |
Hinterlegungsdatum: | 22 Mai 2018 09:11 |
Letzte Änderung: | 23 Sep 2021 14:30 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |