Ganz, Simone (2018)
Drucken Organischer Feldeffekttransistoren: Prozessbezogene Analyse des Ladungsträgertransports.
Technische Universität Darmstadt
Dissertation, Erstveröffentlichung
Kurzbeschreibung (Abstract)
In Zeiten des Internets der Dinge und dem steigenden Bedarf nach leichten, flexiblen und vor allem kostengünstigen elektronischen Bauteilen, stellt die gedruckte organische Elektronik eine gute Ergänzung zur Siliziumtechnologie dar. Obwohl von materialtechnischer Seite die Performance des amorphen Siliziums bereits von organischen Feldeffekttransistoren übertroffen wird, bedarf es immer noch einer Optimierung der zur Herstellung eingesetzten Druckprozesse. Um diese anpassen zu können, müssen die Einflüsse, die durch den Prozess entstehen, erfasst und analysiert werden. Dieser Schritt bildet den ersten Aspekt dieser Arbeit. Doch wie lassen sich diese Einflüsse detektieren? Gedruckte Schichten werden im Allgemeinen optisch auf ihre Güte geprüft. Organische Transistoren werden anhand ihrer elektrischen Performance, meist durch statische Messung der Ausgangs- und Transferkennlinien, charakterisiert. Der zweite Aspekt dieser Arbeit besteht in der Frage, ob die beiden genannten Charakterisierungsmethoden ausreichen, um einen Druckprozess bezüglich der elektrischen Güte der gedruckten Transistoren zu optimieren. In diesem Zuge wird ebenfalls die Eignung des elektronischen Time-Of-Flight-Verfahrens bezüglich dieser Fragestellung getestet. Dieses dynamische Messverfahren basiert auf der Analyse der transienten Antwort eines Transistors auf einen angelegten Rechteckpuls und wird in dieser Arbeit erstmals zur Charakterisierung gedruckter organischer bottom-contact top-gate Transistoren eingesetzt. Ebenfalls neuartig ist die Art der Transformation der Transistorantwort in eine Ladungsträgergeschwindigkeitsverteilung. Diese Verteilung gibt die Häufigkeit der Ladungsträger einer bestimmten scheinbaren Geschwindigkeit an, mit der diese den Transistorkanal überquert haben, bevor sie an der Drain-Elektrode erfasst werden. Die genannten Verfahren werden eingesetzt, um gedruckte organische Feldeffekttransistoren zu charakterisieren, die auf den polymeren p-Halbleitern PIF8-TAA und lisicon® SP400 sowie dem polymeren Dielektrikum lisicon® D320 basieren. Es wird gezeigt, dass die Performance dieser Transistoren nicht allein von der Schichtdicke des Halbleiters, sondern auch von dessen Beschichtungsprozess an sich, d.h. in diesem Fall Spin-Coating, Flexodruck oder Tiefdruck, abhängt. In diesem Zusammenhang wird festgestellt, dass die durch statische bzw. dynamische Messungen hervorgebrachten Prozessfenster und Optima nicht identisch sind. Des Weiteren werden speziell im Tiefdruck die Einflüsse der Druckformgravur untersucht. Es kann ein eindeutiges Optimum des dynamischen Verhaltens für niedrige Lineaturen mit hohen Flächendeckungen gefunden werden. Bezüglich des Flexodrucks wird eine schlechtere Performance für mit Klischeematerial verunreinigte Halbleiterschichten festgestellt. Für gedruckte dielektrische Schichten kann gezeigt werden, dass dünne homogene Schichten die beste Transistorperformance liefern.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2018 | ||||
Autor(en): | Ganz, Simone | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Drucken Organischer Feldeffekttransistoren: Prozessbezogene Analyse des Ladungsträgertransports | ||||
Sprache: | Deutsch | ||||
Referenten: | Dörsam, Prof. Dr. Edgar ; Hofmann, Prof. Dr. Klaus | ||||
Publikationsjahr: | Mai 2018 | ||||
Ort: | Darmstadt | ||||
Datum der mündlichen Prüfung: | 18 Oktober 2017 | ||||
URL / URN: | http://tuprints.ulb.tu-darmstadt.de/7314 | ||||
Kurzbeschreibung (Abstract): | In Zeiten des Internets der Dinge und dem steigenden Bedarf nach leichten, flexiblen und vor allem kostengünstigen elektronischen Bauteilen, stellt die gedruckte organische Elektronik eine gute Ergänzung zur Siliziumtechnologie dar. Obwohl von materialtechnischer Seite die Performance des amorphen Siliziums bereits von organischen Feldeffekttransistoren übertroffen wird, bedarf es immer noch einer Optimierung der zur Herstellung eingesetzten Druckprozesse. Um diese anpassen zu können, müssen die Einflüsse, die durch den Prozess entstehen, erfasst und analysiert werden. Dieser Schritt bildet den ersten Aspekt dieser Arbeit. Doch wie lassen sich diese Einflüsse detektieren? Gedruckte Schichten werden im Allgemeinen optisch auf ihre Güte geprüft. Organische Transistoren werden anhand ihrer elektrischen Performance, meist durch statische Messung der Ausgangs- und Transferkennlinien, charakterisiert. Der zweite Aspekt dieser Arbeit besteht in der Frage, ob die beiden genannten Charakterisierungsmethoden ausreichen, um einen Druckprozess bezüglich der elektrischen Güte der gedruckten Transistoren zu optimieren. In diesem Zuge wird ebenfalls die Eignung des elektronischen Time-Of-Flight-Verfahrens bezüglich dieser Fragestellung getestet. Dieses dynamische Messverfahren basiert auf der Analyse der transienten Antwort eines Transistors auf einen angelegten Rechteckpuls und wird in dieser Arbeit erstmals zur Charakterisierung gedruckter organischer bottom-contact top-gate Transistoren eingesetzt. Ebenfalls neuartig ist die Art der Transformation der Transistorantwort in eine Ladungsträgergeschwindigkeitsverteilung. Diese Verteilung gibt die Häufigkeit der Ladungsträger einer bestimmten scheinbaren Geschwindigkeit an, mit der diese den Transistorkanal überquert haben, bevor sie an der Drain-Elektrode erfasst werden. Die genannten Verfahren werden eingesetzt, um gedruckte organische Feldeffekttransistoren zu charakterisieren, die auf den polymeren p-Halbleitern PIF8-TAA und lisicon® SP400 sowie dem polymeren Dielektrikum lisicon® D320 basieren. Es wird gezeigt, dass die Performance dieser Transistoren nicht allein von der Schichtdicke des Halbleiters, sondern auch von dessen Beschichtungsprozess an sich, d.h. in diesem Fall Spin-Coating, Flexodruck oder Tiefdruck, abhängt. In diesem Zusammenhang wird festgestellt, dass die durch statische bzw. dynamische Messungen hervorgebrachten Prozessfenster und Optima nicht identisch sind. Des Weiteren werden speziell im Tiefdruck die Einflüsse der Druckformgravur untersucht. Es kann ein eindeutiges Optimum des dynamischen Verhaltens für niedrige Lineaturen mit hohen Flächendeckungen gefunden werden. Bezüglich des Flexodrucks wird eine schlechtere Performance für mit Klischeematerial verunreinigte Halbleiterschichten festgestellt. Für gedruckte dielektrische Schichten kann gezeigt werden, dass dünne homogene Schichten die beste Transistorperformance liefern. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
URN: | urn:nbn:de:tuda-tuprints-73148 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau | ||||
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Institut für Druckmaschinen und Druckverfahren (IDD) 16 Fachbereich Maschinenbau > Institut für Druckmaschinen und Druckverfahren (IDD) > Funktionales Drucken |
||||
Hinterlegungsdatum: | 20 Mai 2018 19:55 | ||||
Letzte Änderung: | 20 Mai 2018 19:55 | ||||
PPN: | |||||
Referenten: | Dörsam, Prof. Dr. Edgar ; Hofmann, Prof. Dr. Klaus | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 18 Oktober 2017 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |