TU Darmstadt / ULB / TUbiblio

Influence of Test Stand and Contact Size Sensitivity on the Friction Coefficient in Sheet Metal Forming

Recklin, Viktor ; Dietrich, Florian ; Groche, Peter (2018)
Influence of Test Stand and Contact Size Sensitivity on the Friction Coefficient in Sheet Metal Forming.
In: Lubricants, 6 (2)
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

The precise knowledge of frictional behavior is highly relevant for accurate modelling in sheet metal forming simulations. This allows e.g., the precise prediction of restraining forces which, in turn, determines an optimal draw bead strategy and blank-texture-development for automotive components. As a result, tryout loops can be avoided and thus production costs can be reduced. Nevertheless, the benefit of this detailed friction description is often ignored by the use of a constant friction coefficient. Finding a practical solution has motivated numerous research projects in recent decades. In this context, many efforts have been made to develop test stands to gain a better understanding of friction and to determine load-dependent friction coefficients for simulations. However, different test stands for friction investigation show a big quantitative difference in friction value which makes the direct use of the values in finite element simulation questionable. Therefore, the focus of this paper is to compare two different common strip drawing tests and detect the sources of deviation. In particular, the influence of the contact area between tool and blank is investigated. The results indicate that while the effect of the different test stands is negligible, a high dependency of the friction coefficient on the contact area was shown. This phenomenon is caused by macroscopic lubricant distribution over the contact area, which varies according to the size of the tools. The results show a potential field of research in categorizing different friction test stands and resolving the issue of quantitative non-comparable coefficients of friction.

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Recklin, Viktor ; Dietrich, Florian ; Groche, Peter
Art des Eintrags: Bibliographie
Titel: Influence of Test Stand and Contact Size Sensitivity on the Friction Coefficient in Sheet Metal Forming
Sprache: Englisch
Publikationsjahr: 2018
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Lubricants
Jahrgang/Volume einer Zeitschrift: 6
(Heft-)Nummer: 2
Zugehörige Links:
Kurzbeschreibung (Abstract):

The precise knowledge of frictional behavior is highly relevant for accurate modelling in sheet metal forming simulations. This allows e.g., the precise prediction of restraining forces which, in turn, determines an optimal draw bead strategy and blank-texture-development for automotive components. As a result, tryout loops can be avoided and thus production costs can be reduced. Nevertheless, the benefit of this detailed friction description is often ignored by the use of a constant friction coefficient. Finding a practical solution has motivated numerous research projects in recent decades. In this context, many efforts have been made to develop test stands to gain a better understanding of friction and to determine load-dependent friction coefficients for simulations. However, different test stands for friction investigation show a big quantitative difference in friction value which makes the direct use of the values in finite element simulation questionable. Therefore, the focus of this paper is to compare two different common strip drawing tests and detect the sources of deviation. In particular, the influence of the contact area between tool and blank is investigated. The results indicate that while the effect of the different test stands is negligible, a high dependency of the friction coefficient on the contact area was shown. This phenomenon is caused by macroscopic lubricant distribution over the contact area, which varies according to the size of the tools. The results show a potential field of research in categorizing different friction test stands and resolving the issue of quantitative non-comparable coefficients of friction.

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Produktionstechnik und Umformmaschinen (PtU)
Hinterlegungsdatum: 30 Apr 2018 09:01
Letzte Änderung: 03 Jul 2024 02:29
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen