TU Darmstadt / ULB / TUbiblio

Practical Algebraic Cryptanalysis for Dragon-based Cryptosystems

Mohamed, Wael Said Abd Elmageed ; Bulygin, Stanislav ; Ding, Jintai ; Buchmann, Johannes ; Werner, Fabian
Hrsg.: Heng, S.-H. ; Wright, R. N. ; Goi, B.-M. (2010)
Practical Algebraic Cryptanalysis for Dragon-based Cryptosystems.
Kuala Lumpur, Malaysia
doi: 10.1007/978-3-642-17619-7_11
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Recently, the Little Dragon Two and Poly-Dragon multivariate based public-key cryptosystems were proposed as efficient and secure schemes. In particular, the inventors of the two schemes claim that Little Dragon Two and Poly-Dragon resist algebraic cryptanalysis. In this paper, we show that MXL2, an algebraic attack method based on the XL algorithm and Ding's concept of Mutants, is able to break Little Dragon Two with keys of length up to 229 bits and Poly-Dragon with keys of length up to 299. This contradicts the security claim for the proposed schemes and demonstrates the strength of MXL2 and the Mutant concept. This strength is further supported by experiments that show that in attacks on both schemes the MXL2 algorithm outperforms the Magma's implementation of F4.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2010
Herausgeber: Heng, S.-H. ; Wright, R. N. ; Goi, B.-M.
Autor(en): Mohamed, Wael Said Abd Elmageed ; Bulygin, Stanislav ; Ding, Jintai ; Buchmann, Johannes ; Werner, Fabian
Art des Eintrags: Bibliographie
Titel: Practical Algebraic Cryptanalysis for Dragon-based Cryptosystems
Sprache: Englisch
Publikationsjahr: Dezember 2010
Verlag: Springer
(Heft-)Nummer: 6467
Buchtitel: Proceedings of The Ninth International Conference on Cryptology And Network Security (CANS 2010)
Reihe: Lecture Notes in Computer Science
Veranstaltungsort: Kuala Lumpur, Malaysia
DOI: 10.1007/978-3-642-17619-7_11
Kurzbeschreibung (Abstract):

Recently, the Little Dragon Two and Poly-Dragon multivariate based public-key cryptosystems were proposed as efficient and secure schemes. In particular, the inventors of the two schemes claim that Little Dragon Two and Poly-Dragon resist algebraic cryptanalysis. In this paper, we show that MXL2, an algebraic attack method based on the XL algorithm and Ding's concept of Mutants, is able to break Little Dragon Two with keys of length up to 229 bits and Poly-Dragon with keys of length up to 299. This contradicts the security claim for the proposed schemes and demonstrates the strength of MXL2 and the Mutant concept. This strength is further supported by experiments that show that in attacks on both schemes the MXL2 algorithm outperforms the Magma's implementation of F4.

Freie Schlagworte: Secure Data;Multivariate crypto, cryptanalysis, mutants
ID-Nummer: TUD-CS-2010-0180
Fachbereich(e)/-gebiet(e): LOEWE > LOEWE-Zentren > CASED – Center for Advanced Security Research Darmstadt
20 Fachbereich Informatik > Theoretische Informatik - Kryptographie und Computeralgebra
LOEWE > LOEWE-Zentren
20 Fachbereich Informatik
LOEWE
Hinterlegungsdatum: 30 Dez 2016 20:23
Letzte Änderung: 17 Mai 2018 13:02
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen