TU Darmstadt / ULB / TUbiblio

3LSPG: Forensic Tool Evaluation by Three Layer Stochastic Process-Based Generation of Data

Yannikos, York ; Franke, Frederik ; Winter, Christian ; Schneider, Markus
Hrsg.: Sako, Hiroshi ; Franke, Katrin ; Saitoh, Shuji (2011)
3LSPG: Forensic Tool Evaluation by Three Layer Stochastic Process-Based Generation of Data.
Tokyo, Japan
doi: 10.1007/978-3-642-19376-7_18
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Since organizations cannot prevent all criminal activities of employees by security technology in practice, the application of IT forensic methods for finding traces in data is extremely important. However, new attack variants for occupational crime require new forensic tools and specific environments may require adoptions of methods and tools. Obviously, the development of tools or their adaption require testing using data containing corresponding traces of attacks. Since real-world data are often not available synthetic data are necessary to perform testing. With 3LSPG we propose a systematic method to generate synthetic test data which contain traces of selected attacks. These data can then be used to evaluate the performance of different forensic tools.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2011
Herausgeber: Sako, Hiroshi ; Franke, Katrin ; Saitoh, Shuji
Autor(en): Yannikos, York ; Franke, Frederik ; Winter, Christian ; Schneider, Markus
Art des Eintrags: Bibliographie
Titel: 3LSPG: Forensic Tool Evaluation by Three Layer Stochastic Process-Based Generation of Data
Sprache: Englisch
Publikationsjahr: Februar 2011
Verlag: Springer
Buchtitel: Computational Forensics, Fourth International Workshop, IWCF 2010, Tokyo, Japan, November 11–12, 2010, Revised Selected Papers
Reihe: LNCS
Band einer Reihe: 6540
Veranstaltungsort: Tokyo, Japan
DOI: 10.1007/978-3-642-19376-7_18
Kurzbeschreibung (Abstract):

Since organizations cannot prevent all criminal activities of employees by security technology in practice, the application of IT forensic methods for finding traces in data is extremely important. However, new attack variants for occupational crime require new forensic tools and specific environments may require adoptions of methods and tools. Obviously, the development of tools or their adaption require testing using data containing corresponding traces of attacks. Since real-world data are often not available synthetic data are necessary to perform testing. With 3LSPG we propose a systematic method to generate synthetic test data which contain traces of selected attacks. These data can then be used to evaluate the performance of different forensic tools.

Freie Schlagworte: Secure Data;White collar crime, synthetic data, Markov chains
ID-Nummer: TUD-CS-2010-0202
Fachbereich(e)/-gebiet(e): LOEWE > LOEWE-Zentren > CASED – Center for Advanced Security Research Darmstadt
LOEWE > LOEWE-Zentren
LOEWE
Hinterlegungsdatum: 30 Dez 2016 20:23
Letzte Änderung: 17 Mai 2018 13:02
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen