TU Darmstadt / ULB / TUbiblio

Small Public Keys and Fast Verification for Multivariate Quadratic Public Key Systems

Petzoldt, Albrecht ; Thomae, Enrico ; Bulygin, Stanislav ; Wolf, Christopher
Hrsg.: Preneel, Bart ; Takagi, Tsuyoshi (2011)
Small Public Keys and Fast Verification for Multivariate Quadratic Public Key Systems.
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Security of public key schemes in a post-quantum world is a challenging task as both RSA and ECC will be broken then. In this paper, we show how post-quantum signature systems based on Multivariate Quadratic (MQ) polynomials can be improved up by about 9/10, and 3/4, respectively, in terms of public key size and verification time. The exact figures are 88% and 73%. This is particularly important for small-scale devices with restricted energy, memory, or computational power. In addition, we show that this reduction does not affect security and that it is also optimal in terms of possible attacks. We do so by combining the priory unrelated concepts of reduced and equivalent keys. Our new scheme is based on the so-called Unbalanced Oil and Vinegar class of MQ-schemes. We have derived our results mathematically and verified the speed-ups through a C++ implementation.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2011
Herausgeber: Preneel, Bart ; Takagi, Tsuyoshi
Autor(en): Petzoldt, Albrecht ; Thomae, Enrico ; Bulygin, Stanislav ; Wolf, Christopher
Art des Eintrags: Bibliographie
Titel: Small Public Keys and Fast Verification for Multivariate Quadratic Public Key Systems
Sprache: Englisch
Publikationsjahr: September 2011
Verlag: Springer
Buchtitel: Proceedings of "Workshop on Cryptographic Hardware and Embedded Systems 2011 (CHES 2011)"
Reihe: Lecture Notes in Computer Science
Band einer Reihe: 6917
Kurzbeschreibung (Abstract):

Security of public key schemes in a post-quantum world is a challenging task as both RSA and ECC will be broken then. In this paper, we show how post-quantum signature systems based on Multivariate Quadratic (MQ) polynomials can be improved up by about 9/10, and 3/4, respectively, in terms of public key size and verification time. The exact figures are 88% and 73%. This is particularly important for small-scale devices with restricted energy, memory, or computational power. In addition, we show that this reduction does not affect security and that it is also optimal in terms of possible attacks. We do so by combining the priory unrelated concepts of reduced and equivalent keys. Our new scheme is based on the so-called Unbalanced Oil and Vinegar class of MQ-schemes. We have derived our results mathematically and verified the speed-ups through a C++ implementation.

Freie Schlagworte: Secure Data;Multivariate Quadratic Cryptography, Post-Quantum Cryptography, Implementation, Unbalanced Oil and Vinegar Signature Scheme
ID-Nummer: TUD-CS-2011-0160
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik > Theoretische Informatik - Kryptographie und Computeralgebra
LOEWE > LOEWE-Zentren > CASED – Center for Advanced Security Research Darmstadt
20 Fachbereich Informatik > Theoretische Informatik - Kryptographie und Computeralgebra > Post-Quantum Kryptographie
LOEWE > LOEWE-Zentren
20 Fachbereich Informatik
LOEWE
Hinterlegungsdatum: 30 Dez 2016 20:23
Letzte Änderung: 17 Mai 2018 13:02
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen