TU Darmstadt / ULB / TUbiblio

Detecting Fraud Using Modified Benford Analysis

Winter, Christian ; Schneider, Markus ; Yannikos, York
Hrsg.: Peterson, Gilbert ; Shenoi, Sujeet (2011)
Detecting Fraud Using Modified Benford Analysis.
USA, Florida, Orlando, National Center for Forensic Science
doi: 10.1007/978-3-642-24212-0_10
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Large enterprises frequently enforce accounting limits to reduce the impact of fraud. As a complement to accounting limits, auditors use Benford analysis to detect traces of undesirable or illegal activities in accounting data. Unfortunately, the two fraud fighting measures often do not work well together. Accounting limits may significantly disturb the digit distribution examined by Benford analysis, leading to high false alarm rates, additional investigations and, ultimately, higher costs. To better handle accounting limits, this paper describes a modified Benford analysis technique where a cut-off log-normal distribution derived from the accounting limits and other properties of the data replaces the distribution used in Benford analysis. Experiments with simulated and real-world data demonstrate that the modified Benford analysis technique significantly reduces false positive errors.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2011
Herausgeber: Peterson, Gilbert ; Shenoi, Sujeet
Autor(en): Winter, Christian ; Schneider, Markus ; Yannikos, York
Art des Eintrags: Bibliographie
Titel: Detecting Fraud Using Modified Benford Analysis
Sprache: Englisch
Publikationsjahr: Oktober 2011
Verlag: Springer
Buchtitel: Advances in Digital Forensics VII, Seventh IFIP WG 11.9 International Conference on Digital Forensics, Orlando, Florida, USA, January 30 – February 2, 2011, Revised Selected Papers
Reihe: IFIP Advances in Information and Communication Technology
Band einer Reihe: 361
Veranstaltungsort: USA, Florida, Orlando, National Center for Forensic Science
DOI: 10.1007/978-3-642-24212-0_10
Kurzbeschreibung (Abstract):

Large enterprises frequently enforce accounting limits to reduce the impact of fraud. As a complement to accounting limits, auditors use Benford analysis to detect traces of undesirable or illegal activities in accounting data. Unfortunately, the two fraud fighting measures often do not work well together. Accounting limits may significantly disturb the digit distribution examined by Benford analysis, leading to high false alarm rates, additional investigations and, ultimately, higher costs. To better handle accounting limits, this paper describes a modified Benford analysis technique where a cut-off log-normal distribution derived from the accounting limits and other properties of the data replaces the distribution used in Benford analysis. Experiments with simulated and real-world data demonstrate that the modified Benford analysis technique significantly reduces false positive errors.

Freie Schlagworte: Secure Data;Auditing, fraud detection, Benford analysis
ID-Nummer: TUD-CS-2011-0015
Fachbereich(e)/-gebiet(e): LOEWE > LOEWE-Zentren > CASED – Center for Advanced Security Research Darmstadt
LOEWE > LOEWE-Zentren
LOEWE
Hinterlegungsdatum: 30 Dez 2016 20:23
Letzte Änderung: 17 Mai 2018 13:02
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen