Petzoldt, Albrecht ; Bulygin, Stanislav ; Buchmann, Johannes (2013)
A multivariate based threshold ring signature scheme.
In: Applicable Algebra in Engineering, Communication and Computing, 24 (3 - 4)
doi: 10.1007/s00200-013-0190-3
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
In Sakumoto et al. (CRYPTO 2011, LNCS, vol 6841. Springer, Berlin, pp 706–723, 2011), presented a new multivariate identification scheme, whose security is based solely on the MQ-Problem of solving systems of quadratic equations over finite fields. In this paper we extend this scheme to a threshold ring identification and signature scheme. Our scheme is the first multivariate scheme of this type and generally one of the first multivariate signature schemes with special properties. Despite of the fact that we need more rounds to achieve given levels of security, the signatures are at least twice shorter than those obtained by other post-quantum (e.g. code based) constructions. Furthermore, our scheme offers provable security, which is quite a rare fact in multivariate cryptography.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2013 |
Autor(en): | Petzoldt, Albrecht ; Bulygin, Stanislav ; Buchmann, Johannes |
Art des Eintrags: | Bibliographie |
Titel: | A multivariate based threshold ring signature scheme |
Sprache: | Englisch |
Publikationsjahr: | August 2013 |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Applicable Algebra in Engineering, Communication and Computing |
Jahrgang/Volume einer Zeitschrift: | 24 |
(Heft-)Nummer: | 3 - 4 |
DOI: | 10.1007/s00200-013-0190-3 |
Kurzbeschreibung (Abstract): | In Sakumoto et al. (CRYPTO 2011, LNCS, vol 6841. Springer, Berlin, pp 706–723, 2011), presented a new multivariate identification scheme, whose security is based solely on the MQ-Problem of solving systems of quadratic equations over finite fields. In this paper we extend this scheme to a threshold ring identification and signature scheme. Our scheme is the first multivariate scheme of this type and generally one of the first multivariate signature schemes with special properties. Despite of the fact that we need more rounds to achieve given levels of security, the signatures are at least twice shorter than those obtained by other post-quantum (e.g. code based) constructions. Furthermore, our scheme offers provable security, which is quite a rare fact in multivariate cryptography. |
Freie Schlagworte: | Secure Data |
ID-Nummer: | TUD-CS-2013-0236 |
Fachbereich(e)/-gebiet(e): | LOEWE > LOEWE-Zentren > CASED – Center for Advanced Security Research Darmstadt 20 Fachbereich Informatik > Theoretische Informatik - Kryptographie und Computeralgebra 20 Fachbereich Informatik > Theoretische Informatik - Kryptographie und Computeralgebra > Post-Quantum Kryptographie LOEWE > LOEWE-Zentren 20 Fachbereich Informatik LOEWE |
Hinterlegungsdatum: | 30 Dez 2016 20:23 |
Letzte Änderung: | 17 Mai 2018 13:02 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |