TU Darmstadt / ULB / TUbiblio

A multivariate based threshold ring signature scheme

Petzoldt, Albrecht ; Bulygin, Stanislav ; Buchmann, Johannes (2013)
A multivariate based threshold ring signature scheme.
In: Applicable Algebra in Engineering, Communication and Computing, 24 (3 - 4)
doi: 10.1007/s00200-013-0190-3
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

In Sakumoto et al. (CRYPTO 2011, LNCS, vol 6841. Springer, Berlin, pp 706–723, 2011), presented a new multivariate identification scheme, whose security is based solely on the MQ-Problem of solving systems of quadratic equations over finite fields. In this paper we extend this scheme to a threshold ring identification and signature scheme. Our scheme is the first multivariate scheme of this type and generally one of the first multivariate signature schemes with special properties. Despite of the fact that we need more rounds to achieve given levels of security, the signatures are at least twice shorter than those obtained by other post-quantum (e.g. code based) constructions. Furthermore, our scheme offers provable security, which is quite a rare fact in multivariate cryptography.

Typ des Eintrags: Artikel
Erschienen: 2013
Autor(en): Petzoldt, Albrecht ; Bulygin, Stanislav ; Buchmann, Johannes
Art des Eintrags: Bibliographie
Titel: A multivariate based threshold ring signature scheme
Sprache: Englisch
Publikationsjahr: August 2013
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Applicable Algebra in Engineering, Communication and Computing
Jahrgang/Volume einer Zeitschrift: 24
(Heft-)Nummer: 3 - 4
DOI: 10.1007/s00200-013-0190-3
Kurzbeschreibung (Abstract):

In Sakumoto et al. (CRYPTO 2011, LNCS, vol 6841. Springer, Berlin, pp 706–723, 2011), presented a new multivariate identification scheme, whose security is based solely on the MQ-Problem of solving systems of quadratic equations over finite fields. In this paper we extend this scheme to a threshold ring identification and signature scheme. Our scheme is the first multivariate scheme of this type and generally one of the first multivariate signature schemes with special properties. Despite of the fact that we need more rounds to achieve given levels of security, the signatures are at least twice shorter than those obtained by other post-quantum (e.g. code based) constructions. Furthermore, our scheme offers provable security, which is quite a rare fact in multivariate cryptography.

Freie Schlagworte: Secure Data
ID-Nummer: TUD-CS-2013-0236
Fachbereich(e)/-gebiet(e): LOEWE > LOEWE-Zentren > CASED – Center for Advanced Security Research Darmstadt
20 Fachbereich Informatik > Theoretische Informatik - Kryptographie und Computeralgebra
20 Fachbereich Informatik > Theoretische Informatik - Kryptographie und Computeralgebra > Post-Quantum Kryptographie
LOEWE > LOEWE-Zentren
20 Fachbereich Informatik
LOEWE
Hinterlegungsdatum: 30 Dez 2016 20:23
Letzte Änderung: 17 Mai 2018 13:02
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen