TU Darmstadt / ULB / TUbiblio

Fast Indexing Strategies for Robust Image Hashes

Winter, Christian ; Steinebach, Martin ; Yannikos, York (2014)
Fast Indexing Strategies for Robust Image Hashes.
In: Digital Investigation (Elsevier), 11 (Supplement 1)
doi: 10.1016/j.diin.2014.03.004
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Similarity preserving hashing can aid forensic investigations by providing means to recognize known content and modified versions of known content. However, this raises the need for efficient indexing strategies which support the similarity search. We present and evaluate two indexing strategies for robust image hashes created by the ForBild tool. These strategies are based on generic indexing approaches for Hamming spaces, i.e. spaces of bit vectors equipped with the Hamming distance. Our first strategy uses a vantage point tree, and the second strategy uses locality-sensitive hashing (LSH). Although the calculation of Hamming distances is inexpensive and hence challenging for indexing strategies, we improve the speed for identifying similar items by a factor of about 30 with the tree-based index, and a factor of more than 100 with the LSH index. While the tree-based index retrieves all approximate matches, the speed of LSH is paid with a small rate of false negatives.

Typ des Eintrags: Artikel
Erschienen: 2014
Autor(en): Winter, Christian ; Steinebach, Martin ; Yannikos, York
Art des Eintrags: Bibliographie
Titel: Fast Indexing Strategies for Robust Image Hashes
Sprache: Englisch
Publikationsjahr: 2014
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Digital Investigation (Elsevier)
Jahrgang/Volume einer Zeitschrift: 11
(Heft-)Nummer: Supplement 1
Veranstaltungsort: Amsterdam, Netherlands
DOI: 10.1016/j.diin.2014.03.004
Kurzbeschreibung (Abstract):

Similarity preserving hashing can aid forensic investigations by providing means to recognize known content and modified versions of known content. However, this raises the need for efficient indexing strategies which support the similarity search. We present and evaluate two indexing strategies for robust image hashes created by the ForBild tool. These strategies are based on generic indexing approaches for Hamming spaces, i.e. spaces of bit vectors equipped with the Hamming distance. Our first strategy uses a vantage point tree, and the second strategy uses locality-sensitive hashing (LSH). Although the calculation of Hamming distances is inexpensive and hence challenging for indexing strategies, we improve the speed for identifying similar items by a factor of about 30 with the tree-based index, and a factor of more than 100 with the LSH index. While the tree-based index retrieves all approximate matches, the speed of LSH is paid with a small rate of false negatives.

Freie Schlagworte: Secure Data;Robust hashing, ForBild, indexing, vantage point tree, locality-sensitive hashing
ID-Nummer: TUD-CS-2014-0926
Fachbereich(e)/-gebiet(e): LOEWE > LOEWE-Zentren > CASED – Center for Advanced Security Research Darmstadt
LOEWE > LOEWE-Zentren
LOEWE
Hinterlegungsdatum: 30 Dez 2016 20:23
Letzte Änderung: 17 Mai 2018 13:02
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen