TU Darmstadt / ULB / TUbiblio

Complexity Reduction in Graphs: A User Centric Approach to Graph Exploration

Grube, Tim ; Volk, Florian ; Mühlhäuser, Max ; Bhairav, Suhas ; Sachidananda, Vinay ; Elovici, Yuval (2017)
Complexity Reduction in Graphs: A User Centric Approach to Graph Exploration.
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Human exploration of large graph structures becomes increasingly difficult with growing graph sizes. A visual representation of such large graphs, for example, social networks and citational networks, has to find a trade-off between showing details in a magnified view and the verall graph structure. Displaying these both aspects at the same time results in an overloaded visualization that is inaccessible for human users. In this paper, we present a new approach to address this issue by combining and extending graph-theoretic properties with community detection algorithms. Our approach is semi-automated and non-destructive. The aim is to retain core properties of the graph while--at the same time--hiding less important side information from the human user. We analyze the results yielded by applying our approach to large real-world network data sets, revealing a massive reduction of displayed nodes and links.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2017
Autor(en): Grube, Tim ; Volk, Florian ; Mühlhäuser, Max ; Bhairav, Suhas ; Sachidananda, Vinay ; Elovici, Yuval
Art des Eintrags: Bibliographie
Titel: Complexity Reduction in Graphs: A User Centric Approach to Graph Exploration
Sprache: Deutsch
Publikationsjahr: Oktober 2017
Ort: Athens, Greece
Verlag: IARIA
Buchtitel: 10th International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services
URL / URN: http://www.thinkmind.org/download.php?articleid=centric_2017...
Kurzbeschreibung (Abstract):

Human exploration of large graph structures becomes increasingly difficult with growing graph sizes. A visual representation of such large graphs, for example, social networks and citational networks, has to find a trade-off between showing details in a magnified view and the verall graph structure. Displaying these both aspects at the same time results in an overloaded visualization that is inaccessible for human users. In this paper, we present a new approach to address this issue by combining and extending graph-theoretic properties with community detection algorithms. Our approach is semi-automated and non-destructive. The aim is to retain core properties of the graph while--at the same time--hiding less important side information from the human user. We analyze the results yielded by applying our approach to large real-world network data sets, revealing a massive reduction of displayed nodes and links.

Freie Schlagworte: - SST - Area Smart Security and Trust;- SSI - Area Secure Smart Infrastructures;SPIN: Smart Protection in Infrastructures and Networks
ID-Nummer: TUD-CS-2017-0204
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Telekooperation
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 2050 Privacy and Trust for Mobile Users
Profilbereiche
Profilbereiche > Cybersicherheit (CYSEC)
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > CRISP - Center for Research in Security and Privacy
Hinterlegungsdatum: 28 Jul 2017 13:33
Letzte Änderung: 14 Jun 2021 06:14
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen