Zeitouni, Shaza and Dessouky, Ghada and Arias, Orlando and Sullivan, Dean and Ibrahim, Ahmad and Jin, Yier and Sadeghi, Ahmad-Reza (2017):
ATRIUM: Runtime Attestation Resilient Under Memory Attacks.
In: 2017 International Conference On Computer Aided Design (ICCAD'17),
Irvine, California, US, [Conference or Workshop Item]
Abstract
Remote attestation is an important security service that allows a trusted party (verifier) to verify the integrity of the software running on a remote and potentially compromised device (prover). The security of existing remote attestation schemes relies on the assumptions that attacks are software-only and the prover's code cannot be modified at runtime. However, in practice, these schemes can be bypassed in a stronger and more realistic adversary model with physical access to (either off-chip or on-chip) code memory and is hereby capable of controlling and modifying code memory to attest benign code but execute malicious code instead -- leaving the underlying system vulnerable to Time of Check Time of Use (TOCTOU) attacks. In this paper, we first show how to successfully launch TOCTOU attacks on some recently proposed attestation schemes by exploiting physical access to code memory. Then we present the design and proof-of-concept implementation of SMARTER, the first practical runtime remote attestation system that securely attests both the code's binary and its execution in the mentioned stronger adversary model. SMARTER provides resilience against both software- and hardware-based TOCTOU attacks, while incurring minimal area and performance overhead.
Item Type: | Conference or Workshop Item |
---|---|
Erschienen: | 2017 |
Creators: | Zeitouni, Shaza and Dessouky, Ghada and Arias, Orlando and Sullivan, Dean and Ibrahim, Ahmad and Jin, Yier and Sadeghi, Ahmad-Reza |
Title: | ATRIUM: Runtime Attestation Resilient Under Memory Attacks |
Language: | German |
Abstract: | Remote attestation is an important security service that allows a trusted party (verifier) to verify the integrity of the software running on a remote and potentially compromised device (prover). The security of existing remote attestation schemes relies on the assumptions that attacks are software-only and the prover's code cannot be modified at runtime. However, in practice, these schemes can be bypassed in a stronger and more realistic adversary model with physical access to (either off-chip or on-chip) code memory and is hereby capable of controlling and modifying code memory to attest benign code but execute malicious code instead -- leaving the underlying system vulnerable to Time of Check Time of Use (TOCTOU) attacks. In this paper, we first show how to successfully launch TOCTOU attacks on some recently proposed attestation schemes by exploiting physical access to code memory. Then we present the design and proof-of-concept implementation of SMARTER, the first practical runtime remote attestation system that securely attests both the code's binary and its execution in the mentioned stronger adversary model. SMARTER provides resilience against both software- and hardware-based TOCTOU attacks, while incurring minimal area and performance overhead. |
Title of Book: | 2017 International Conference On Computer Aided Design (ICCAD'17) |
Uncontrolled Keywords: | Solutions; S2; Primitives; P3 |
Divisions: | 20 Department of Computer Science 20 Department of Computer Science > System Security Lab DFG-Collaborative Research Centres (incl. Transregio) DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres Profile Areas Profile Areas > Cybersecurity (CYSEC) DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 1119: CROSSING – Cryptography-Based Security Solutions: Enabling Trust in New and Next Generation Computing Environments |
Event Location: | Irvine, California, US |
Date Deposited: | 20 Jun 2017 17:47 |
Identification Number: | TUD-CS-2017-0135 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
![]() |
Send an inquiry |
Options (only for editors)
![]() |
Show editorial Details |