TU Darmstadt / ULB / TUbiblio

Browse by Person

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Group by: No Grouping | Item Type | Date | Language
Number of items: 9.

Hofmann, N. ; Müller-Gronbach, Thomas ; Ritter, Klaus (2002):
Linear vs. standard information for scalar stochastic differential equations.
In: Journal of complexity, 18, pp. 394-414. [Article]

Hofmann, Norbert ; Müller-Gronbach, Thomas (2002):
On the global error of Ito-Taylor schemes for strong approximation of scalar stochastic differential equations.
In: Technische Universität Darmstadt. Fachbereich Mathematik: Preprint, 2192, Darmstadt, Technische Universitaet Darmstadt, Fachbereich Mathematik, [Book]

Müller-Gronbach, Thomas (2002):
Strong approximation of systems of stochastic differential equations.
Darmstadt, Techn. Univ., [Habilitation]

Hofmann, Norbert ; Müller-Gronbach, Thomas ; Ritter, K. (2001):
The optimal discretization of stochastic differential equations.
In: Journal of complexity, 17, pp. 117-153. [Article]

Ritter, Klaus ; Hofmann, N. ; Müller-Gronbach, Thomas (2000):
Optimal approximation of stochastic differential equations by adaptive step-size control.
In: Mathematics of computation, 69, pp. 1017-1034. [Article]

Ritter, Klaus ; Hofmann, N. ; Müller-Gronbach, Thomas (2000):
Step-size control for the uniform approximation of systems of stochastic differential equations with additive noise.
In: Annals of applied probability, 10, pp. 616-633. [Article]

Müller-Gronbach, Thomas (1996):
Hyperbolic cross designs for approximation of Random fields.
1811, Darmstadt: Techn. Hochschule, FB Mathematik, 1996. 23 S., Darmstadt, Techn. Hochschule, FB Mathematik, [Book]

Lenk, Jürgen ; Müller-Gronbach, Thomas ; Rettig, S. (1996):
Lorenzkurve und Gini-Koeffizient zur statistischen Beschreibung von Konzentration.
1855, Darmstadt: Techn. Hochschule, FB Mathematik, 1996. 14 S., Darmstadt, Techn. Hochschule, FB Mathematik, [Book]

Emmerich, Frank ; Müller-Gronbach, Thomas (1996):
A law of the iterated logarithm for discrete discrepancies and its applications to pseudorandom vector sequences.
1836, Darmstadt: Techn. Hochschule, FB Mathematik, 1996. 11 S., Darmstadt, Techn. Hochschule, FB Mathematik, [Book]

This list was generated on Tue Mar 28 01:37:28 2023 CEST.