TU Darmstadt / ULB / TUbiblio

Items in division

Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Group by: Creators | Date | Item Type | Language | No Grouping
Jump to: A | F | H | K | L | M | O | P | S | V
Number of items at this level: 15.

A

Alex, Jerome (2019):
The periodic Steiner problem.
Darmstadt, Technische Universität Darmstadt, Technische Universität, [Online-Edition: https://tuprints.ulb.tu-darmstadt.de/8538],
[Ph.D. Thesis]

Alex, Tristan (2016):
Minimal Graphs in Riemannian Fibrations.
Darmstadt, Technische Universität Darmstadt, [Online-Edition: http://tuprints.ulb.tu-darmstadt.de/5571],
[Ph.D. Thesis]

F

Frisch, Dennis (2010):
Classification of Immersions which are Bounded by Curves in Surfaces.
TU Darmstadt, [Online-Edition: urn:nbn:de:tuda-tuprints-22027],
[Ph.D. Thesis]

H

He, Yong (2012):
Constant Mean Curvature Surfaces bifurcating from Nodoids.
TU Darmstadt / FB Mathematik, [Online-Edition: urn:nbn:de:tuda-tuprints-28801],
[Ph.D. Thesis]

Hartmann, René (2011):
Subdivision Surfaces: C2 schemes and generalized control nets.
Darmstadt, TU Darmstadt/Mathematik, [Online-Edition: urn:nbn:de:tuda-tuprints-26170],
[Ph.D. Thesis]

K

Kürsten, Susanne (2015):
Das Einbettungsproblem für periodische Flächen in R^n.
TU Darmstadt, [Online-Edition: http://tuprints.ulb.tu-darmstadt.de/4427],
[Ph.D. Thesis]

L

Linker, Patrick (2016):
Foundations of E-Theory.
3, In: The Winnower, pp. e145350-06184, ISSN 2373-146X, [Online-Edition: https://thewinnower.com/papers/3339-foundations-of-e-theory],
[Article]

M

Maier, Lars-Benjamin (2018):
Ambient Approximation of Functions and Functionals on Embedded Submanifolds.
Darmstadt, Technische Universität, [Online-Edition: https://tuprints.ulb.tu-darmstadt.de/8101],
[Ph.D. Thesis]

Möller, Claudia (2015):
A New Strategy for Exact Determination of the Joint Spectral Radius.
Darmstadt, TU Darmstadt, [Online-Edition: http://tuprints.ulb.tu-darmstadt.de/4603],
[Ph.D. Thesis]

O

Odathuparambil, Sonja (2016):
Ambient Spline Approximation on Manifolds.
Darmstadt, Technische Universität, [Online-Edition: http://tuprints.ulb.tu-darmstadt.de/5660],
[Ph.D. Thesis]

P

Plehnert, Julia (2012):
Constant mean curvature surfaces in homogeneous manifolds.
Berlin, Logos, TU Darmstadt, ISBN 978-3-8325-3206-2 ; 3-8325-3206-4,
[Ph.D. Thesis]

Prasiswa, Jennifer Susanne Mae (2009):
Lokale und globale Algorithmen zur Approximation mit erweiterten B-Splines.
Darmstadt, Technische Universität, TU Darmstadt, [Ph.D. Thesis]

Prasiswa, Jennifer (2009):
Lokale und globale Algorithmen zur Approximation mit erweiterten B-Splines.
Darmstadt, Technische Universität, TU Darmstadt, [Online-Edition: urn:nbn:de:tuda-tuprints-18843],
[Ph.D. Thesis]

S

Sissouno, Nada (2011):
Multivariate Splineapproximation auf Gebieten.
TU Darmstadt, [Online-Edition: urn:nbn:de:tuda-tuprints-27391],
[Ph.D. Thesis]

V

Vrzina, Miroslav (2016):
Constant Mean Curvature Annuli in Homogeneous Manifolds.
Darmstadt, Technische Universität Darmstadt, [Online-Edition: http://tuprints.ulb.tu-darmstadt.de/5444],
[Ph.D. Thesis]

This list was generated on Sun Jan 19 01:59:49 2020 CET.