TU Darmstadt / ULB / TUbiblio

Items in division

Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Group by: Creators | Date | Item Type | Language | No Grouping
Jump to: C | F | G | H | J | K | L | S | W | Z
Number of items at this level: 30.


Collaboration, Open Science (2015):
Estimating the reproducibility of psychological science.
In: Science, 349p. 943, DOI: 10.1126/science.aac4716,
[Online-Edition: http://dx.doi.org/10.1126/science.aac4716],

Cooke, T. and Jäkel, F. and Wallraven, C. and Bülthoff, H. (2007):
Multimodal Similarity and Categorization of Novel, Three-Dimensional Objects.
In: Neuropsychologia, 45pp. 484-495, DOI: 10.1016/j.neuropsychologia.2006.02.009,
[Online-Edition: https://doi.org/10.1016/j.neuropsychologia.2006.02.009],


Fleming, R. and Jäkel, F. and Maloney, L. T. (2011):
Visual Perception of Thick Transparent Materials.
In: Psychological Science, 22pp. 812-820, DOI: 10.1177/0956797611408734,
[Online-Edition: https://doi.org/10.1177/0956797611408734],


Gershman, S. J. and Tenenbaum, J. and Jäkel, F. (2016):
Discovering hierarchical motion structure.
In: Vision Research, (126), pp. 232-241, DOI: 10.1016/j.visres.2015.03.004,
[Online-Edition: http://dx.doi.org/10.1016/j.visres.2015.03.004],

Gershman, S. J. and Jäkel, F. and Tenenbaum, J. B. Knauff, M. and Pauen, M. and Sebanz, N. and Wachsmuth, I. (eds.) (2013):
Bayesian Vector Analysis and the Perception of Hierarchical Motion.
Austin, TX, Cognitive Science Society, In: Proceedings of the 35th Annual Conference of the Cognitive Science Society, Austin, TX, [Online-Edition: http://mindmodeling.org/cogsci2013/papers/0112/paper0112.pdf],
[Conference or Workshop Item]

Görür, D. and Jäkel, F. and Rasmussen, C. E. (2006):
A Choice Model with Infinitely Many Latent Features.
Pittsburgh, PA, In: Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, pp. 8-15, [Online-Edition: https://dl.acm.org/citation.cfm?id=1143890],
[Conference or Workshop Item]


Hummel, P. A. and Jäkel, F. and Lange, S. and Mertelsmann, R. Cox, M. and Funk, P. and Begum, S. (eds.) (2018):
A Textual Recommender System for Clinical Data.
In: Lecture Notes in Computer Science, In: International Conference on Case-Based Reasoning 2018, pp. 140-152, DOI: 10.1007/978-3-030-01081-2₁₀,
[Conference or Workshop Item]


Jäkel, Frank and Worm, Oliver and Lange, Sascha and Mertelsmann, Roland (2018):
A stochastic model of myeloid cell lineages in hematopoiesis and pathway mutations in acute myeloid leukemia.
In: PloS one, 13 (10), pp. 1-25, ISSN 1932-6203,
DOI: 10.1371/journal.pone.0204393,

Jäkel, F. and Singh, M. and Wichmann, F. A. and Herzog, M. H. (2016):
An overview of quantitative approaches in Gestalt perception.
In: Vision Research, (126), pp. 3-8, DOI: 10.1016/j.visres.2016.06.004,
[Online-Edition: https://doi.org/10.1016/j.visres.2016.06.004],

Jäkel, F. and Liu, M. (2016):
On interactivity in probabilistic pragmatics: yet another rational analysis of scalar implicatures.
In: Zeitschrift für Sprachwissenschaft, 35 (1), pp. 69-87, DOI: 10.1515/zfs-2016-0005,
[Online-Edition: https://doi.org/10.1515/zfs-2016-0005],

Jäkel, F. and Schreiber, C. (2013):
Introspection in Problem Solving.
In: Journal of Problem Solving, 6 (1), pp. 20-33, DOI: 10.7771/1932-6246.1131,
[Online-Edition: http://dx.doi.org/10.7771/1932-6246.1131],

Jäkel, F. and Meyer, U. Stephan, A. and Walter, S. (eds.) (2013):
Kategorisierung und Begriffe.
In: Handbuch Kognitionswissenschaft, Stuttgart, Metzler, [Book Section]

Jäkel, F. and Schölkopf, B. and Wichmann, F. A. (2009):
Does Cognitive Science Need Kernels.
In: Trends in Cognitive Sciences, 13pp. 381-388, DOI: 10.1016/j.tics.2009.06.002,
[Online-Edition: https://doi.org/10.1016/j.tics.2009.06.002],

Jäkel, F. and Schölkopf, B. and Wichmann, F. A. (2008):
Similarity, Kernels and the Triangle Inequality.
In: Journal of Mathematical Psychology, 52 (5), pp. 297-303, DOI: 10.1016/j.jmp.2008.03.001,
[Online-Edition: https://doi.org/10.1016/j.jmp.2008.03.001],

Jäkel, F. and Schölkopf, B. and Wichmann, F. A. (2008):
Generalization and Similarity in Exemplar Models of Categorization: Insights from Machine Learning.
In: Psychonomic Bulletin & Review, 15 (2), pp. 256-271, DOI: 10.3758/PBR.15.2.256,
[Online-Edition: https://doi.org/10.3758/PBR.15.2.256],

Jäkel, F. and Schölkopf, B. and Wichmann, F. A. (2007):
A Tutorial on Kernel Methods for Categorization.
In: Journal of Mathematical Psychology, 51pp. 343-358, DOI: 10.1016/j.jmp.2007.06.002,
[Online-Edition: https://doi.org/10.1016/j.jmp.2007.06.002],

Jäkel, F. and Wichmann, F. A. (2006):
Spatial four-alternative forced-choice method is the preferred psychophysical method for naïve observers.
In: Journal of Vision, 6 (11), pp. 1307-1322, DOI: 10.1167/6.11.13,
[Online-Edition: http://journalofvision.org/6/11/13/],

Jäkel, F. and Ernst, M. O. Oakley, I. and O'Modhrain, S. and Newell, F. (eds.) (2003):
Learning to Combine Arbitrary Signals from Vision and Touch.
Trinity College Dublin and Media Lab Europe, In: Eurohaptics 2003 Conference Proceedings, pp. 276-290, [Conference or Workshop Item]


Kuss, M. and Jäkel, F. and Wichmann, F. A. (2005):
Bayesian Inference for Psychometric Functions.
In: Journal of Vision, 5pp. 478-492, DOI: 10.1167/5.5.8,
[Online-Edition: https://doi.org/10.1167/5.5.8],


León-Villagrá, P. and Jäkel, F. Knauff, M. and Pauen, M. and Sebanz, N. and Wachsmuth, I. (eds.) (2013):
Categorization and Abstract Similarity in Chess.
Austin, TX, In: Annual Conference of the Cognitive Science Society 2013, Austin, TX, [Online-Edition: https://mindmodeling.org/cogsci2013/papers/0513/paper0513.pd...],
[Conference or Workshop Item]


Stoilova, V. V. and Knauer, B. and Berg, S. and Rieber, E. and Jäkel, F. and Stüttgen, M. C. (2020):
Auditory cortex reflects goal-directed movement but is not necessary for behavioral adaptation in sound-cued reward tracking.
In: Journal of Neurophysiology, American Physiological Society, ISSN 0022-3077,
DOI: 10.1152/jn.00736.2019,

Schumacher, J. and Wunderle, T. and Fries, P. and Jäkel, F. and Pipa, G. (2015):
A Statistical Framework to Infer Delay and Direction of Information Flow from Measurements of Complex Systems.
In: Neural Computation, 27pp. 1555-1608, DOI: 10.1162/NECOa₀₀₇₅₆,
[Online-Edition: https://doi.org/10.1162/NECO_a_00756],

Stüttgen, M. C. and Kasties, N. and Lengersdorf, D. and Starosta, S. and Güntürkün, O. and Jäkel, F. (2013):
Suboptimal criterion setting in a perceptual choice task with asymmetric reinforcement.
In: Behavioral Processes, 96pp. 59-70, DOI: 10.1016/j.beproc.2013.02.014,
[Online-Edition: https://doi.org/10.1016/j.beproc.2013.02.014],

Stüttgen, M. C. and Schwarz, C. and Jäkel, F. (2011):
Mapping spikes to sensations.
In: Frontiers in Neuroscience, 5 (125), pp. 1-17, DOI: 10.3389/fnins.2011.00125,
[Online-Edition: https://doi.org/10.3389/fnins.2011.00125],

Savova, V. and Jäkel, F. and Tenenbaum, J. B. Taatgen, N. and van Rijn, H. (eds.) (2009):
Grammar-based object representations in a scene parsing task.
Austin, TX, Cognitive Science Society, In: Proceedings of the 31st Annual Meeting of the Cognitive Science Society, Austin, TX, pp. 857-862, [Online-Edition: http://csjarchive.cogsci.rpi.edu/proceedings/2009/papers/150...],
[Conference or Workshop Item]

Storck, J. and Jäkel, F. and Deco, G. (2001):
Temporal clustering with spiking neurons and dynamic synapses: towards technological applications.
In: Neural Networks, 14 (3), pp. 275-285, DOI: 10.1016/S0893-6080(00)00101-5,
[Online-Edition: https://doi.org/10.1016/S0893-6080(00)00101-5],


Wichmann, F. A. and Jäkel, F. Wixted, J. T. and Wagenmakers, E. J. (eds.) (2018):
Methods in Psychophysics.
In: Stevens' Handbook of Experimental Psychology and Cognitive Neuroscience, pp. 265-306, [Online-Edition: https://www.wiley.com/en-us/Stevens%27+Handbook+of+Experimen...],
[Book Section]


Zednik, C. and Jäkel, F. (2019):
Descending Marr’s levels: Standard observers are no panacea.
In: Behavioral and Brain Sciences, 41pp. 43-44, [Article]

Zednik, C. and Jäkel, F. (2016):
Bayesian reverse-engineering considered as a research strategy for cognitive science.
In: Synthese, pp. 3951-3985, DOI: 10.1007/s11229-016-1180-3,
[Online-Edition: https://doi.org/10.1007/s11229-016-1180-3],

Zednik, C. and Jäkel, F. Bello, P. and Guarini, M. and McShane, M. and Scasselati, B. (eds.) (2014):
How does Bayesian reverse-engineering work?
Austin, TX, Cognitive Science Society, In: Proceedings of the 36th Annual Conference of the Cognitive Science Society, Austin, TX, pp. 666-671, [Online-Edition: https://mindmodeling.org/cogsci2014/papers/123/paper123.pdf],
[Conference or Workshop Item]

This list was generated on Sun Sep 20 01:39:16 2020 CEST.