Egert, Rolf ; Garcia Cordero, Carlos ; Tundis, Andrea ; Mühlhäuser, Max (2017)
HOLEG: a Simulator for Evaluating Resilient Energy Networks based on the Holon Analogy.
21st IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications (DS-RT 2017). Rome, Italy (18.10.2017-20.10.2017)
doi: 10.1109/DISTRA.2017.8167665
Conference or Workshop Item, Bibliographie
Abstract
<div>The process of designing and evaluating distributed</div> <div>Cyber-Physical Systems (CPSs) is not a trivial task. There</div> <div>are many challenges to tackle such as managing distributed</div> <div>resources, enabling communication between components, and</div> <div>choosing performance metrics to evaluate the “goodness” of</div> <div>the system. Smart Grids (SGs) are prominent representatives</div> <div>of CPSs, a particular type of Critical Infrastructure (CI), whose</div> <div>organizational model is becoming more distributed and dynamic.</div> <div>Due to this paradigm shift, new control and management mechanisms</div> <div>need to be identified and tested to guarantee uninterrupted</div> <div>operation. However, novel approaches cannot always be tested</div> <div>against real networks as the economic cost and risk can be</div> <div>high. In contrast, modeling and simulation techniques are viable</div> <div>evaluation mechanisms that support the continuous evolution of</div> <div>CIs. In this paper, we present an Open Source time-discrete</div> <div>simulation software, called HOLEG, that models and evaluates</div> <div>SGs. The software is based on the Holon analogy, a bioinspired</div> <div>approach that enables systems resilience through flexible</div> <div>reconfiguration mechanisms. The presented software provides</div> <div>features that enable the integration and execution of optimization</div> <div>algorithms along with their evaluation. To demonstrate HOLEG,</div> <div>a case study is presented where a heuristic algorithm is implemented</div> <div>to minimize wasted energy while preventing network</div> <div>destabilization.</div>
Item Type: | Conference or Workshop Item |
---|---|
Erschienen: | 2017 |
Creators: | Egert, Rolf ; Garcia Cordero, Carlos ; Tundis, Andrea ; Mühlhäuser, Max |
Type of entry: | Bibliographie |
Title: | HOLEG: a Simulator for Evaluating Resilient Energy Networks based on the Holon Analogy |
Language: | English |
Date: | October 2017 |
Publisher: | IEEE |
Event Title: | 21st IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications (DS-RT 2017) |
Event Location: | Rome, Italy |
Event Dates: | 18.10.2017-20.10.2017 |
DOI: | 10.1109/DISTRA.2017.8167665 |
URL / URN: | https://ieeexplore.ieee.org/document/8167665 |
Abstract: | <div>The process of designing and evaluating distributed</div> <div>Cyber-Physical Systems (CPSs) is not a trivial task. There</div> <div>are many challenges to tackle such as managing distributed</div> <div>resources, enabling communication between components, and</div> <div>choosing performance metrics to evaluate the “goodness” of</div> <div>the system. Smart Grids (SGs) are prominent representatives</div> <div>of CPSs, a particular type of Critical Infrastructure (CI), whose</div> <div>organizational model is becoming more distributed and dynamic.</div> <div>Due to this paradigm shift, new control and management mechanisms</div> <div>need to be identified and tested to guarantee uninterrupted</div> <div>operation. However, novel approaches cannot always be tested</div> <div>against real networks as the economic cost and risk can be</div> <div>high. In contrast, modeling and simulation techniques are viable</div> <div>evaluation mechanisms that support the continuous evolution of</div> <div>CIs. In this paper, we present an Open Source time-discrete</div> <div>simulation software, called HOLEG, that models and evaluates</div> <div>SGs. The software is based on the Holon analogy, a bioinspired</div> <div>approach that enables systems resilience through flexible</div> <div>reconfiguration mechanisms. The presented software provides</div> <div>features that enable the integration and execution of optimization</div> <div>algorithms along with their evaluation. To demonstrate HOLEG,</div> <div>a case study is presented where a heuristic algorithm is implemented</div> <div>to minimize wasted energy while preventing network</div> <div>destabilization.</div> |
Uncontrolled Keywords: | SPIN: Smart Protection in Infrastructures and Networks |
Identification Number: | TUD-CS-17-0002 |
Divisions: | 20 Department of Computer Science 20 Department of Computer Science > Telecooperation |
Date Deposited: | 29 Jun 2017 10:53 |
Last Modified: | 14 Jun 2021 06:14 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Send an inquiry |
Options (only for editors)
Show editorial Details |