TU Darmstadt / ULB / TUbiblio

Engineering of new-to-nature halogenated indigo precursors in plants

Fräbel, Sabine ; Wagner, Bastian ; Krischke, Markus ; Schmidts, Volker ; Thiele, Christina M. ; Staniek, Agata ; Warzecha, Heribert (2018)
Engineering of new-to-nature halogenated indigo precursors in plants.
In: Metabolic Engineering, 46
doi: 10.1016/j.ymben.2018.02.003
Article, Bibliographie

Abstract

Plants are versatile chemists producing a tremendous variety of specialized compounds. Here, we describe the engineering of entirely novel metabolic pathways in planta enabling generation of halogenated indigo precursors as non-natural plant products. Indican (indolyl-β-d-glucopyranoside) is a secondary metabolite characteristic of a number of dyers plants. Its deglucosylation and subsequent oxidative dimerization leads to the blue dye, indigo. Halogenated indican derivatives are commonly used as detection reagents in histochemical and molecular biology applications; their production, however, relies largely on chemical synthesis. To attain the de novo biosynthesis in a plant-based system devoid of indican, we employed a sequence of enzymes from diverse sources, including three microbial tryptophan halogenases substituting the amino acid at either C5, C6, or C7 of the indole moiety. Subsequent processing of the halotryptophan by bacterial tryptophanase TnaA in concert with a mutant of the human cytochrome P450 monooxygenase 2A6 and glycosylation of the resulting indoxyl derivatives by an endogenous tobacco glucosyltransferase yielded corresponding haloindican variants in transiently transformed Nicotiana benthamiana plants. Accumulation levels were highest when the 5-halogenase PyrH was utilized, reaching 0.93 ±0.089mg/g dry weight of 5-chloroindican. The identity of the latter was unambiguously confirmed by NMR analysis. Moreover, our combinatorial approach, facilitated by the modular assembly capabilities of the GoldenBraid cloning system and inspired by the unique compartmentation of plant cells, afforded testing a number of alternative subcellular localizations for pathway design. In consequence, chloroplasts were validated as functional biosynthetic venues for haloindican, with the requisite reducing augmentation of the halogenases as well as the cytochrome P450 monooxygenase fulfilled by catalytic systems native to the organelle. Thus, our study puts forward a viable alternative production platform for halogenated fine chemicals, eschewing reliance on fossil fuel resources and toxic chemicals. We further contend that in planta generation of halogenated indigoid precursors previously unknown to nature offers an extended view on and, indeed, pushes forward the established frontiers of biosynthetic capacity of plants.

Item Type: Article
Erschienen: 2018
Creators: Fräbel, Sabine ; Wagner, Bastian ; Krischke, Markus ; Schmidts, Volker ; Thiele, Christina M. ; Staniek, Agata ; Warzecha, Heribert
Type of entry: Bibliographie
Title: Engineering of new-to-nature halogenated indigo precursors in plants
Language: English
Date: March 2018
Journal or Publication Title: Metabolic Engineering
Volume of the journal: 46
DOI: 10.1016/j.ymben.2018.02.003
URL / URN: https://doi.org/10.1016/j.ymben.2018.02.003
Abstract:

Plants are versatile chemists producing a tremendous variety of specialized compounds. Here, we describe the engineering of entirely novel metabolic pathways in planta enabling generation of halogenated indigo precursors as non-natural plant products. Indican (indolyl-β-d-glucopyranoside) is a secondary metabolite characteristic of a number of dyers plants. Its deglucosylation and subsequent oxidative dimerization leads to the blue dye, indigo. Halogenated indican derivatives are commonly used as detection reagents in histochemical and molecular biology applications; their production, however, relies largely on chemical synthesis. To attain the de novo biosynthesis in a plant-based system devoid of indican, we employed a sequence of enzymes from diverse sources, including three microbial tryptophan halogenases substituting the amino acid at either C5, C6, or C7 of the indole moiety. Subsequent processing of the halotryptophan by bacterial tryptophanase TnaA in concert with a mutant of the human cytochrome P450 monooxygenase 2A6 and glycosylation of the resulting indoxyl derivatives by an endogenous tobacco glucosyltransferase yielded corresponding haloindican variants in transiently transformed Nicotiana benthamiana plants. Accumulation levels were highest when the 5-halogenase PyrH was utilized, reaching 0.93 ±0.089mg/g dry weight of 5-chloroindican. The identity of the latter was unambiguously confirmed by NMR analysis. Moreover, our combinatorial approach, facilitated by the modular assembly capabilities of the GoldenBraid cloning system and inspired by the unique compartmentation of plant cells, afforded testing a number of alternative subcellular localizations for pathway design. In consequence, chloroplasts were validated as functional biosynthetic venues for haloindican, with the requisite reducing augmentation of the halogenases as well as the cytochrome P450 monooxygenase fulfilled by catalytic systems native to the organelle. Thus, our study puts forward a viable alternative production platform for halogenated fine chemicals, eschewing reliance on fossil fuel resources and toxic chemicals. We further contend that in planta generation of halogenated indigoid precursors previously unknown to nature offers an extended view on and, indeed, pushes forward the established frontiers of biosynthetic capacity of plants.

Identification Number: pmid:29466700
Divisions: 10 Department of Biology
10 Department of Biology > Plant Biotechnology and Metabolic Engineering
Profile Areas
Profile Areas > Thermo-Fluids & Interfaces
Date Deposited: 27 Feb 2018 10:10
Last Modified: 30 Sep 2020 06:30
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details