TU Darmstadt / ULB / TUbiblio

Multiscale and luminescent, hollow microspheres for gas phase thermometry

Bischoff, Lothar ; Stephan, Michael ; Birkel, Christina S. ; Litterscheid, Christian F. ; Dreizler, Andreas ; Albert, Barbara (2018)
Multiscale and luminescent, hollow microspheres for gas phase thermometry.
In: Scientific Reports, 2018, 8 (1)
doi: 10.1038/s41598-017-18942-2
Artikel, Zweitveröffentlichung

Kurzbeschreibung (Abstract)

Recently developed laser-based measurement techniques are used to image the temperatures and velocities in gas flows. They require new phosphor materials with an unprecedented combination of properties. A novel synthesis procedure is described here; it results in hierarchically structured, hollow microspheres of Eu3+-doped Y2O3, with unusual particle sizes and very good characteristics compared to full particles. Solution-based precipitation on polymer microballoons produces very stable and luminescent, ceramic materials of extremely low density. As a result of the – compared to established template-directed syntheses – reduced mass of polymer that is lost upon calcination, micron-sized particles are obtained with mesoporous walls, low defect concentrations, and nanoscale wall thicknesses. They can be produced with larger diameters (~25 µm) compared to known hollow spheres and exhibit an optimized flow behavior. Their temperature sensing properties and excellent fluidic follow-up behavior are shown by determining emission intensity ratios in a specially designed heating chamber. Emission spectroscopy and imaging, electron microscopy and X-ray diffraction results are presented for aerosolizable Y2O3 with an optimized dopant concentration (8%). Challenges in the field of thermofluids can be addressed by combined application of thermometry and particle image velocimetry with such hollow microparticles.

Typ des Eintrags: Artikel
Erschienen: 2018
Autor(en): Bischoff, Lothar ; Stephan, Michael ; Birkel, Christina S. ; Litterscheid, Christian F. ; Dreizler, Andreas ; Albert, Barbara
Art des Eintrags: Zweitveröffentlichung
Titel: Multiscale and luminescent, hollow microspheres for gas phase thermometry
Sprache: Englisch
Publikationsjahr: 2018
Publikationsdatum der Erstveröffentlichung: 2018
Verlag: Nature Publ. Group
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Scientific Reports
Jahrgang/Volume einer Zeitschrift: 8
(Heft-)Nummer: 1
DOI: 10.1038/s41598-017-18942-2
URL / URN: https://doi.org/10.1038/s41598-017-18942-2
Herkunft: Zweitveröffentlichung aus gefördertem Golden Open Access
Kurzbeschreibung (Abstract):

Recently developed laser-based measurement techniques are used to image the temperatures and velocities in gas flows. They require new phosphor materials with an unprecedented combination of properties. A novel synthesis procedure is described here; it results in hierarchically structured, hollow microspheres of Eu3+-doped Y2O3, with unusual particle sizes and very good characteristics compared to full particles. Solution-based precipitation on polymer microballoons produces very stable and luminescent, ceramic materials of extremely low density. As a result of the – compared to established template-directed syntheses – reduced mass of polymer that is lost upon calcination, micron-sized particles are obtained with mesoporous walls, low defect concentrations, and nanoscale wall thicknesses. They can be produced with larger diameters (~25 µm) compared to known hollow spheres and exhibit an optimized flow behavior. Their temperature sensing properties and excellent fluidic follow-up behavior are shown by determining emission intensity ratios in a specially designed heating chamber. Emission spectroscopy and imaging, electron microscopy and X-ray diffraction results are presented for aerosolizable Y2O3 with an optimized dopant concentration (8%). Challenges in the field of thermofluids can be addressed by combined application of thermometry and particle image velocimetry with such hollow microparticles.

URN: urn:nbn:de:tuda-tuprints-72035
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
07 Fachbereich Chemie
07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Anorganische Chemie
Hinterlegungsdatum: 21 Jan 2018 20:55
Letzte Änderung: 02 Mär 2020 12:20
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen