TU Darmstadt / ULB / TUbiblio

Minimal Graphs in Riemannian Fibrations

Alex, Tristan (2016)
Minimal Graphs in Riemannian Fibrations.
Technische Universität Darmstadt
Ph.D. Thesis, Primary publication

Abstract

In this dissertation, minimal and constant mean curvature surface theory in 3-dimensional Riemannian fibrations are studied.

In the main part of the thesis, new complete, embedded minimal surfaces in the 3-sphere are constructed by solving a Plateau problem with respect to a suitable Jordan curve consisting entirely of horizontal geodesic arcs and extending this solution by means of Schwarz reflection.

Additionally, an elementary proof for the vertical half-space theorem in Heisenberg space is given by finding a subsolution of the minimal surface equation.

Finally, projections of constant mean curvature multigraphs are characterized: they are locally contained to one side of complete curves with constant geodesic curvature.

Item Type: Ph.D. Thesis
Erschienen: 2016
Creators: Alex, Tristan
Type of entry: Primary publication
Title: Minimal Graphs in Riemannian Fibrations
Language: English
Referees: Große-Brauckmann, Prof. Dr. Karsten ; Fröhlich, Prof. Dr. Steffen
Date: 19 May 2016
Place of Publication: Darmstadt
Refereed: 6 July 2016
URL / URN: http://tuprints.ulb.tu-darmstadt.de/5571
Abstract:

In this dissertation, minimal and constant mean curvature surface theory in 3-dimensional Riemannian fibrations are studied.

In the main part of the thesis, new complete, embedded minimal surfaces in the 3-sphere are constructed by solving a Plateau problem with respect to a suitable Jordan curve consisting entirely of horizontal geodesic arcs and extending this solution by means of Schwarz reflection.

Additionally, an elementary proof for the vertical half-space theorem in Heisenberg space is given by finding a subsolution of the minimal surface equation.

Finally, projections of constant mean curvature multigraphs are characterized: they are locally contained to one side of complete curves with constant geodesic curvature.

Alternative Abstract:
Alternative abstract Language

In dieser Dissertation werden Minimalflächen und Flächen konstanter mittlerer Krümmung in dreidimensionalen Riemannschen Faserungen studiert.

Im Hauptteil der Arbeit werden neue vollständige, eingebettete Minimalflächen in der 3-Sphäre konstruiert, indem zunächst ein Plateauproblem bezüglich einer geeigneten Jordankurve gelöst wird, die nur aus horizontalen Geodätischen besteht. Die Plateaulösung wird mit dem Schwarz-Spiegelungsprinzip zu einer vollständigen, eingebetteten Fläche fortgesetzt.

Zusätzlich wird ein elementarer Beweis für den vertikalen Halbraumsatz im Heisenbergraum angegeben, indem eine konkrete Sublösung für die Minimalflächengleichung gefunden wird.

Im letzten Teil werden die Projektionen von Multigraphen konstanter mittlerer Krümmung charakterisiert: sie liegen lokal auf einer Seite von Kurven konstanter geodätischer Krümmung.

German
Uncontrolled Keywords: Minimal surfaces, constant mean curvature surfaces, maximum principle, Plateau, reflection principles, Riemannian fibration, model geometry
URN: urn:nbn:de:tuda-tuprints-55719
Classification DDC: 500 Science and mathematics > 510 Mathematics
Divisions: 04 Department of Mathematics > Applied Geometry
04 Department of Mathematics
Date Deposited: 17 Jul 2016 19:55
Last Modified: 17 Jul 2016 19:55
PPN:
Referees: Große-Brauckmann, Prof. Dr. Karsten ; Fröhlich, Prof. Dr. Steffen
Refereed / Verteidigung / mdl. Prüfung: 6 July 2016
Export:
Suche nach Titel in: TUfind oder in Google
Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details