Thangaraj, Gopenath ; Manakov, Vadim ; Cucu, Aljona ; Fournier, Claudia ; Layer, Paul G. (2016)
Inflammatory effects of TNFα are counteracted by X-ray irradiation and AChE inhibition in mouse micromass cultures.
In: Chemico-biological interactions, 259 (Pt. B)
Article, Bibliographie
Abstract
As a means to analyze anti-inflammatory effects by radiation and/or by cholinergic mechanisms, we found that cultured primary human osteoblasts express most cholinergic components. After X-ray irradiation, their level of acetylcholinesterase (AChE) was strongly elevated. As a 3D model, we cultured mesenchymal stem cells isolated from E11 mouse embryos as micromass nodules, and differentiated them into chondro- and osteoblasts. They were stimulated by 5 or 10 ng/ml of the inflammatory cytokine TNF-α to mimic an inflammatory condition in vitro, before exposure to 2 Gy X-rays. Effects on chondro- and osteoblasts of TNF-α, of X-rays, or both were analysed by Alcian Blue, or Alizarin Red staining, respectively. Acetylcholinesterase (AChE) activity was visualized histochemically. The results showed that treatment with TNF-α affected cartilage and bone formation in vitro, while X-rays reversed the effects of TNF-α. After irradiation, both AChE and alkaline phosphatase (ALP) activities, a marker for bone mineralization, were raised, suggesting that X-rays stimulated cholinergic mechanisms during calcification. Notably, the TNFα-effects on cultures were also counterbalanced after AChE activity was blocked by BW284c51. These findings suggest a complex crosstalk between radiation, cholinergic and inflammatory mechanisms, which could have wide significances, e.g. for understanding rheumatoid arthritis.
Item Type: | Article |
---|---|
Erschienen: | 2016 |
Creators: | Thangaraj, Gopenath ; Manakov, Vadim ; Cucu, Aljona ; Fournier, Claudia ; Layer, Paul G. |
Type of entry: | Bibliographie |
Title: | Inflammatory effects of TNFα are counteracted by X-ray irradiation and AChE inhibition in mouse micromass cultures. |
Language: | English |
Date: | 2016 |
Journal or Publication Title: | Chemico-biological interactions |
Volume of the journal: | 259 |
Issue Number: | Pt. B |
Abstract: | As a means to analyze anti-inflammatory effects by radiation and/or by cholinergic mechanisms, we found that cultured primary human osteoblasts express most cholinergic components. After X-ray irradiation, their level of acetylcholinesterase (AChE) was strongly elevated. As a 3D model, we cultured mesenchymal stem cells isolated from E11 mouse embryos as micromass nodules, and differentiated them into chondro- and osteoblasts. They were stimulated by 5 or 10 ng/ml of the inflammatory cytokine TNF-α to mimic an inflammatory condition in vitro, before exposure to 2 Gy X-rays. Effects on chondro- and osteoblasts of TNF-α, of X-rays, or both were analysed by Alcian Blue, or Alizarin Red staining, respectively. Acetylcholinesterase (AChE) activity was visualized histochemically. The results showed that treatment with TNF-α affected cartilage and bone formation in vitro, while X-rays reversed the effects of TNF-α. After irradiation, both AChE and alkaline phosphatase (ALP) activities, a marker for bone mineralization, were raised, suggesting that X-rays stimulated cholinergic mechanisms during calcification. Notably, the TNFα-effects on cultures were also counterbalanced after AChE activity was blocked by BW284c51. These findings suggest a complex crosstalk between radiation, cholinergic and inflammatory mechanisms, which could have wide significances, e.g. for understanding rheumatoid arthritis. |
Divisions: | 10 Department of Biology 10 Department of Biology > Developmental Biology and Neurogenetics |
Date Deposited: | 19 Apr 2016 10:13 |
Last Modified: | 13 Feb 2017 11:49 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Send an inquiry |
Options (only for editors)
Show editorial Details |