Kuhl, Alexander (2015)
Entwicklung und Realisierung eines 40 GHz Ankunftszeitmonitors für Elektronenpakete für FLASH und den European XFEL.
Technische Universität Darmstadt
Ph.D. Thesis, Primary publication
Abstract
Die vorliegende Arbeit dokumentiert die Entwicklung eines Ankunftszeitmonitorsystems mit verbesserter Zeitauflösung fur den Freie-Elektronen-Laser in Hamburg (FLASH) am Deutschen Elektronen-Synchrotron (DESY). Die Notwendigkeit der Entwicklung dieses Systems ergab sich aus der Anforderung auch bei Experimenten mit Elektronenpaketladungen von nur 20 pC, anstelle der bisher verwendeten 500 bis 3000 pC, eine Zeitauflösung von 10 fs zu erzielen. Das gesamte System muss hierzu eine Bandbreite von etwa 40 GHz aufweisen.
Zur Realisierung wurde zunächst eine Studie neuer potentieller Pickupelektroden mittels Computersimulationen durchgeführt. Unter Berücksichtigung der elektrischen und mechanischen Eigenschaften sowie der Herstellbarkeit wurde ein konusförmiger Pickup ausgewählt. Grenzen für die Produktionstoleranzen wurden anhand einer ausführlichen Simulationsstudie ermittelt. Die Ergebnisse der Vermessung des elektrischen Verhaltens eines Prototypen zeigten gute Übereinstimmung mit den Simulationsergebnissen.
Das elektrische Signal des Pickups wird auf einen elektro-optischen Modulator (EOM) geleitet. Die erhöhte Bandbreite erfordert den Austausch der bestehenden EOMs. Es existieren nur wenige EOMs, welche nominell die geforderte Bandbreite aufweisen. Sie wurden im Labor hinsichtlich ihrer Eigenschaften, wie optische Modulationstiefe und optischer Verluste untersucht und das geeignetste Modell ausgewählt.
Schließlich werden Aufbaukonzepte präsentiert. Der erweiterte Ladungsbereich erfordert einen Betrieb mit zwei Modi für niedrige und hohe Ladungen, wobei jeder Modus einen Fein- und einen Grobkanal besitzt. Der Grobkanal dient zur Bestimmung des Arbeitsfensters des Feinkanals. Um die hohe Ankunftszeitgenauigkeit des Gesamtsystems zu garantieren kommt der Wahl der HF-Kabel eine wichtige Bedeutung zu. Diese müssen einerseits die Anforderung an die hohe Bandbreite erfüllen und zudem eine geringe Dämpfung aufweisen.
Ein Prototyp des neuen Ankunftszeitmonitorsystems wurde realisiert und vermessen. Aufgrund von Verfügbarkeitsproblemen musste dabei zunächst auf ein EOM Modell mit geringerer Bandbreite zurückgegriffen werden, um die Funktionalität zu demonstrieren. Gemäß Computersimulationen wird das neue Ankunftszeitmonitorsystem bei Verwendung des geplanten EOM die geforderte Genauigkeit von 10 fs ab einer Elektronenpaketladung von etwa 55 pC erzielen. Die unerwartet hohe Dämpfung der Verkabelung vom Pickup bis zum EOM bei Frequenzen oberhalb von etwa 20 GHz erlaubt es nicht diese Genauigkeit bei 20 pC Ladung zu erreichen. Bei dieser Paketladung kann eine Genauigkeit von etwa 27 fs erwartet werden.
Item Type: | Ph.D. Thesis | ||||
---|---|---|---|---|---|
Erschienen: | 2015 | ||||
Creators: | Kuhl, Alexander | ||||
Type of entry: | Primary publication | ||||
Title: | Entwicklung und Realisierung eines 40 GHz Ankunftszeitmonitors für Elektronenpakete für FLASH und den European XFEL | ||||
Language: | German | ||||
Referees: | Weiland, Prof. Dr.- Thomas ; Roßbach, Prof. Dr. Jörg | ||||
Date: | 2015 | ||||
Place of Publication: | Darmstadt | ||||
Refereed: | 7 November 2014 | ||||
URL / URN: | http://tuprints.ulb.tu-darmstadt.de/4673 | ||||
Abstract: | Die vorliegende Arbeit dokumentiert die Entwicklung eines Ankunftszeitmonitorsystems mit verbesserter Zeitauflösung fur den Freie-Elektronen-Laser in Hamburg (FLASH) am Deutschen Elektronen-Synchrotron (DESY). Die Notwendigkeit der Entwicklung dieses Systems ergab sich aus der Anforderung auch bei Experimenten mit Elektronenpaketladungen von nur 20 pC, anstelle der bisher verwendeten 500 bis 3000 pC, eine Zeitauflösung von 10 fs zu erzielen. Das gesamte System muss hierzu eine Bandbreite von etwa 40 GHz aufweisen. Zur Realisierung wurde zunächst eine Studie neuer potentieller Pickupelektroden mittels Computersimulationen durchgeführt. Unter Berücksichtigung der elektrischen und mechanischen Eigenschaften sowie der Herstellbarkeit wurde ein konusförmiger Pickup ausgewählt. Grenzen für die Produktionstoleranzen wurden anhand einer ausführlichen Simulationsstudie ermittelt. Die Ergebnisse der Vermessung des elektrischen Verhaltens eines Prototypen zeigten gute Übereinstimmung mit den Simulationsergebnissen. Das elektrische Signal des Pickups wird auf einen elektro-optischen Modulator (EOM) geleitet. Die erhöhte Bandbreite erfordert den Austausch der bestehenden EOMs. Es existieren nur wenige EOMs, welche nominell die geforderte Bandbreite aufweisen. Sie wurden im Labor hinsichtlich ihrer Eigenschaften, wie optische Modulationstiefe und optischer Verluste untersucht und das geeignetste Modell ausgewählt. Schließlich werden Aufbaukonzepte präsentiert. Der erweiterte Ladungsbereich erfordert einen Betrieb mit zwei Modi für niedrige und hohe Ladungen, wobei jeder Modus einen Fein- und einen Grobkanal besitzt. Der Grobkanal dient zur Bestimmung des Arbeitsfensters des Feinkanals. Um die hohe Ankunftszeitgenauigkeit des Gesamtsystems zu garantieren kommt der Wahl der HF-Kabel eine wichtige Bedeutung zu. Diese müssen einerseits die Anforderung an die hohe Bandbreite erfüllen und zudem eine geringe Dämpfung aufweisen. Ein Prototyp des neuen Ankunftszeitmonitorsystems wurde realisiert und vermessen. Aufgrund von Verfügbarkeitsproblemen musste dabei zunächst auf ein EOM Modell mit geringerer Bandbreite zurückgegriffen werden, um die Funktionalität zu demonstrieren. Gemäß Computersimulationen wird das neue Ankunftszeitmonitorsystem bei Verwendung des geplanten EOM die geforderte Genauigkeit von 10 fs ab einer Elektronenpaketladung von etwa 55 pC erzielen. Die unerwartet hohe Dämpfung der Verkabelung vom Pickup bis zum EOM bei Frequenzen oberhalb von etwa 20 GHz erlaubt es nicht diese Genauigkeit bei 20 pC Ladung zu erreichen. Bei dieser Paketladung kann eine Genauigkeit von etwa 27 fs erwartet werden. |
||||
Alternative Abstract: |
|
||||
URN: | urn:nbn:de:tuda-tuprints-46732 | ||||
Classification DDC: | 500 Science and mathematics > 500 Science 500 Science and mathematics > 530 Physics 600 Technology, medicine, applied sciences > 620 Engineering and machine engineering |
||||
Divisions: | Study Areas 18 Department of Electrical Engineering and Information Technology 18 Department of Electrical Engineering and Information Technology > Institute of Electromagnetic Field Theory (from 01.01.2019 renamed Institute for Accelerator Science and Electromagnetic Fields) 05 Department of Physics 05 Department of Physics > Institute of Nuclear Physics Zentrale Einrichtungen Exzellenzinitiative Exzellenzinitiative > Graduate Schools > Graduate School of Computational Engineering (CE) Exzellenzinitiative > Graduate Schools |
||||
Date Deposited: | 30 Aug 2015 19:55 | ||||
Last Modified: | 22 Sep 2016 08:05 | ||||
PPN: | |||||
Referees: | Weiland, Prof. Dr.- Thomas ; Roßbach, Prof. Dr. Jörg | ||||
Refereed / Verteidigung / mdl. Prüfung: | 7 November 2014 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Send an inquiry |
Options (only for editors)
Show editorial Details |