Sapper, Eva ; Gassmann, Andrea ; Gjødvad, Lars ; Jo, Wook ; Granzow, Torsten ; Rödel, Jürgen (2014)
Cycling stability of lead-free BNT–8BT and BNT–6BT–3KNN multilayer actuators and bulk ceramics.
In: Journal of the European Ceramic Society, 34 (3)
Article
Abstract
This study presents the electromechanical properties and cycling stability of lead-free piezoelectric materials 0.92(Bi1/2Na1/2)TiO3–0.08BaTiO3 (BNT–8BT) and 0.91(Bi1/2Na1/2)TiO3–0.06BaTiO3–0.03(K0.5Na0.5)NbO3 (BNT–6BT–3KNN). Both bulk samples as well as multilayer actuators (MLA) with internal Ag/Pd (70/30) electrodes were successfully processed from both materials. Electromechanical characteristics in the non-fatigued state and after different numbers of unipolar fatigue cycles are provided, representing the first direct comparison of the fatigue resistance of lead-free bulk ceramics and the corresponding MLAs. At a maximum field of 6 kV/mm and a frequency of 50 Hz, BNT–8BT MLA delivered a maximum strain of 0.07% and displayed excellent cycling stability. BNT–6BT–3KNN MLA provided a higher strain of 0.15% initially but degraded during cycling and exhibited break down after 107 cycles. Furthermore, the frequency dependence of strain and the self-heating during cycling were investigated. The temperature increase is limited only to 2 °C in BNT–8BT MLA and 13 °C in BNT–6BT–3KNN MLA.
Item Type: | Article |
---|---|
Erschienen: | 2014 |
Creators: | Sapper, Eva ; Gassmann, Andrea ; Gjødvad, Lars ; Jo, Wook ; Granzow, Torsten ; Rödel, Jürgen |
Type of entry: | Bibliographie |
Title: | Cycling stability of lead-free BNT–8BT and BNT–6BT–3KNN multilayer actuators and bulk ceramics |
Language: | English |
Date: | March 2014 |
Journal or Publication Title: | Journal of the European Ceramic Society |
Volume of the journal: | 34 |
Issue Number: | 3 |
URL / URN: | http://dx.doi.org/10.1016/j.jeurceramsoc.2013.09.006 |
Abstract: | This study presents the electromechanical properties and cycling stability of lead-free piezoelectric materials 0.92(Bi1/2Na1/2)TiO3–0.08BaTiO3 (BNT–8BT) and 0.91(Bi1/2Na1/2)TiO3–0.06BaTiO3–0.03(K0.5Na0.5)NbO3 (BNT–6BT–3KNN). Both bulk samples as well as multilayer actuators (MLA) with internal Ag/Pd (70/30) electrodes were successfully processed from both materials. Electromechanical characteristics in the non-fatigued state and after different numbers of unipolar fatigue cycles are provided, representing the first direct comparison of the fatigue resistance of lead-free bulk ceramics and the corresponding MLAs. At a maximum field of 6 kV/mm and a frequency of 50 Hz, BNT–8BT MLA delivered a maximum strain of 0.07% and displayed excellent cycling stability. BNT–6BT–3KNN MLA provided a higher strain of 0.15% initially but degraded during cycling and exhibited break down after 107 cycles. Furthermore, the frequency dependence of strain and the self-heating during cycling were investigated. The temperature increase is limited only to 2 °C in BNT–8BT MLA and 13 °C in BNT–6BT–3KNN MLA. |
Uncontrolled Keywords: | Bismuth sodium titanate; Lead-free; Multilayer actuator; Strain hysteresis; Fatigue |
Identification Number: | doi:10.1016/j.jeurceramsoc.2013.09.006 |
Additional Information: | SFB 595 Cooperation A1, D1, D4 |
Divisions: | 11 Department of Materials and Earth Sciences 11 Department of Materials and Earth Sciences > Material Science 11 Department of Materials and Earth Sciences > Material Science > Electronic Materials 11 Department of Materials and Earth Sciences > Material Science > Nonmetallic-Inorganic Materials Zentrale Einrichtungen DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue > A - Synthesis > Subproject A1: Manufacturing of ceramic, textured actuators with high strain DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue > D - Component properties DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue > D - Component properties > Subproject D1: Mesoscopic and macroscopic fatigue in doped ferroelectric ceramics DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue > D - Component properties > Subproject D4: Fatigue of organic electronic devices DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue > A - Synthesis DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres DFG-Collaborative Research Centres (incl. Transregio) |
Date Deposited: | 02 Dec 2013 09:28 |
Last Modified: | 12 Dec 2013 09:39 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
![]() |
Send an inquiry |
Options (only for editors)
![]() |
Show editorial Details |