TU Darmstadt / ULB / TUbiblio

Arbeitsspielaufgelöste Modellbildung und Hardware-in-the-Loop-Simulation von Pkw-Dieselmotoren mit Abgasturboaufladung

Zahn, Sebastian (2012):
Arbeitsspielaufgelöste Modellbildung und Hardware-in-the-Loop-Simulation von Pkw-Dieselmotoren mit Abgasturboaufladung.
Darmstadt, TU Darmstadt, TU Darmstadt,
[Ph.D. Thesis]

Abstract

Ziel dieser Arbeit ist die Entwicklung eines dynamischen, arbeitsspielaufgelösten Modells eines CRDI-Pkw-Dieselmotors mit Abgasrückführung, Ladeluftkühlung und Abgasturboaufladung für Hardware-in-the-Loop-Testumgebungen. Im Fokus der Modellanwendung stehen die Entwicklung, der Test und die Vorapplikation zylinderdruckbasierter Motormanagementsysteme. Das entwickelte Echtzeitmotormodell setzt sich aus einem Luft- und Abgaspfadmodell, einem VTG-Turboladermodell, einem Modell der Zylindergruppe sowie einem Emissionsmodell zusammen. Der realisierte Abbildungsumfang ermöglicht die Berechnung sämtlicher für die Sensorsimulation und die Motoroptimierung erforderlichen Prozessgrößen. Die Darstellung der zylinderinternen Größen basiert auf einer einzonigen Arbeitsprozessrechnung. Der dieselmotorische Verbrennungsprozess wird durch ein nulldimensionales, phänomenologisches Modell beschrieben, das sich in ein Vormischverbrennungsmodell, ein Diffusionsverbrennungsmodell und ein Zündverzugsmodell untergliedert. Die Wandwärmeverluste werden durch einen ähnlichkeitstheoretischen Ansatz abgeschätzt. Für die Modellierung der Ladungswechselorgane und des Kurbeltriebs kommen physikalisch-basierte Modelle zur Anwendung. Der Luft- und Abgaspfad wird mittels einer Speicher-Drossel-Struktur nachgebildet (Ansatz konzentrierter Parameter). Der Wärmeaustausch im AGR- und Ladeluftkühler wird durch instationäre Modelle beschrieben. Die Modellierung der Wärmeverluste in den Speicherelementen des Abgassystems beruht ebenfalls auf instationären Ansätzen. Einen Kernpunkt der Arbeit bildet die Ableitung eines echtzeitfähigen, physikalisch-parametrischen Modells des VTG-Abgasturboladers. Das Modell stellt eine Alternative zu konventionellen Kennfeldansätzen dar und ermöglicht eine realitätsnahe Wiedergabe von Schwachlastbetriebspunkten und stark transienten Motorbetriebsphasen. Grundlage der Modellierung ist die eindimensionale Stromfadentheorie. Das diabate Prozessverhalten des Verdichters und der Turbine wird durch ein dynamisches Wärmeübergangsmodell berücksichtigt. Die Reibverluste in den Lagerungen des Turboladers werden separat durch ein physikalisches Reibmodell erfasst. Zur Approximation der Stickoxid- und Partikelemissionen des Motors kommen experimentelle Modelle zur Anwendung. Als Modellstruktur dienen lokal-polynomiale Neuro-Fuzzy-Ansätze. Für die Parametrierung des Motormodells wird eine durchgängige Bedatungsmethode entwickelt, die von der Prüfstandskonfiguration über die Versuchsplanung und Versuchsdurchführung bis zur Parameteridentifikation und Modellvalidierung reicht. Ein Novum stellt die Identifikation des Turboladers mittels Heiß- und Kaltversuchen am Motorprüfstand dar. Das Gesamtmodell wird auf einem HiL-Testsystem implementiert und die Lauffähigkeit des Modells im geschlossenen Kreis mit einem realen Motorsteuergerät nachgewiesen. Eine detaillierte Validierung des Simulationsmodells erfolgt anhand von stationären und dynamischen Messdaten vom Motorprüfstand.

Item Type: Ph.D. Thesis
Erschienen: 2012
Creators: Zahn, Sebastian
Title: Arbeitsspielaufgelöste Modellbildung und Hardware-in-the-Loop-Simulation von Pkw-Dieselmotoren mit Abgasturboaufladung
Language: German
Abstract:

Ziel dieser Arbeit ist die Entwicklung eines dynamischen, arbeitsspielaufgelösten Modells eines CRDI-Pkw-Dieselmotors mit Abgasrückführung, Ladeluftkühlung und Abgasturboaufladung für Hardware-in-the-Loop-Testumgebungen. Im Fokus der Modellanwendung stehen die Entwicklung, der Test und die Vorapplikation zylinderdruckbasierter Motormanagementsysteme. Das entwickelte Echtzeitmotormodell setzt sich aus einem Luft- und Abgaspfadmodell, einem VTG-Turboladermodell, einem Modell der Zylindergruppe sowie einem Emissionsmodell zusammen. Der realisierte Abbildungsumfang ermöglicht die Berechnung sämtlicher für die Sensorsimulation und die Motoroptimierung erforderlichen Prozessgrößen. Die Darstellung der zylinderinternen Größen basiert auf einer einzonigen Arbeitsprozessrechnung. Der dieselmotorische Verbrennungsprozess wird durch ein nulldimensionales, phänomenologisches Modell beschrieben, das sich in ein Vormischverbrennungsmodell, ein Diffusionsverbrennungsmodell und ein Zündverzugsmodell untergliedert. Die Wandwärmeverluste werden durch einen ähnlichkeitstheoretischen Ansatz abgeschätzt. Für die Modellierung der Ladungswechselorgane und des Kurbeltriebs kommen physikalisch-basierte Modelle zur Anwendung. Der Luft- und Abgaspfad wird mittels einer Speicher-Drossel-Struktur nachgebildet (Ansatz konzentrierter Parameter). Der Wärmeaustausch im AGR- und Ladeluftkühler wird durch instationäre Modelle beschrieben. Die Modellierung der Wärmeverluste in den Speicherelementen des Abgassystems beruht ebenfalls auf instationären Ansätzen. Einen Kernpunkt der Arbeit bildet die Ableitung eines echtzeitfähigen, physikalisch-parametrischen Modells des VTG-Abgasturboladers. Das Modell stellt eine Alternative zu konventionellen Kennfeldansätzen dar und ermöglicht eine realitätsnahe Wiedergabe von Schwachlastbetriebspunkten und stark transienten Motorbetriebsphasen. Grundlage der Modellierung ist die eindimensionale Stromfadentheorie. Das diabate Prozessverhalten des Verdichters und der Turbine wird durch ein dynamisches Wärmeübergangsmodell berücksichtigt. Die Reibverluste in den Lagerungen des Turboladers werden separat durch ein physikalisches Reibmodell erfasst. Zur Approximation der Stickoxid- und Partikelemissionen des Motors kommen experimentelle Modelle zur Anwendung. Als Modellstruktur dienen lokal-polynomiale Neuro-Fuzzy-Ansätze. Für die Parametrierung des Motormodells wird eine durchgängige Bedatungsmethode entwickelt, die von der Prüfstandskonfiguration über die Versuchsplanung und Versuchsdurchführung bis zur Parameteridentifikation und Modellvalidierung reicht. Ein Novum stellt die Identifikation des Turboladers mittels Heiß- und Kaltversuchen am Motorprüfstand dar. Das Gesamtmodell wird auf einem HiL-Testsystem implementiert und die Lauffähigkeit des Modells im geschlossenen Kreis mit einem realen Motorsteuergerät nachgewiesen. Eine detaillierte Validierung des Simulationsmodells erfolgt anhand von stationären und dynamischen Messdaten vom Motorprüfstand.

Place of Publication: Darmstadt
Publisher: TU Darmstadt
Uncontrolled Keywords: Hardware-in-the-Loop-Simulation, Echtzeit, Dieselmotor, Zylinderdruck, Arbeitsprozessrechnung, Phänomenologisches Verbrennungsmodell, Fluidmechanisches Turboladermodell, Diabates Prozessverhalten, Stromfadentheorie, Identifikationsprozess
Divisions: 18 Department of Electrical Engineering and Information Technology
18 Department of Electrical Engineering and Information Technology > Institut für Automatisierungstechnik und Mechatronik
18 Department of Electrical Engineering and Information Technology > Institut für Automatisierungstechnik und Mechatronik > Regelungstechnik und Prozessautomatisierung
Date Deposited: 18 Mar 2013 16:26
Official URL: http://tuprints.ulb.tu-darmstadt.de/3165/
URN: urn:nbn:de:tuda-tuprints-31658
Additional Information:

Druckausg.: Zahn, S.: Arbeitsspielaufgelöste Modellbildung und Hardware-in-the-Loop-Simulation von Pkw-Dieselmotoren mit Abgasturboaufladung. Fortschr.-Ber. VDI Reihe 12 Nr. 760. Düsseldorf: VDI-Verlag 2012. ISBN 978-3-18-376012-1, ISSN 0178-9449

License: Creative Commons: Attribution-Noncommercial-No Derivative Works 3.0
Referees: Isermann, Prof. Dr. Rolf ; Pischinger, Prof. Dr. Stefan
Refereed / Verteidigung / mdl. Prüfung: 19 July 2012
Export:
Suche nach Titel in: TUfind oder in Google
Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details