TU Darmstadt / ULB / TUbiblio

Spatially resolved studies in direct methanol fuel cells

Dixon, Ditty (2012)
Spatially resolved studies in direct methanol fuel cells.
Technische Universität Darmstadt
Ph.D. Thesis, Primary publication

Abstract

The thesis mainly focuses on the spatially resolved characterization of a direct methanol fuel cell. Initially spatially resolved analyses were carried out on an end of life (5000 hrs operated) stack membrane electrode assembly (MEA) using various techniques, like X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive X-ray (EDX) mapping and X-ray absorption spectroscopy (XAS). The fate of the Ru in the direct methanol fuel cell (DMFC) with ageing is carefully analyzed in these studies. It was found that the large oxidized ruthenium fraction in the anode catalyst plays a significant role in particle growth and ruthenium dissolution. Ru was also found in the form of precipitates in the Nafion membrane preferentially at the methanol outlet regions. Ex-situ studies were preceded by in-situ spatially resolved XAS studies. For these, in-situ cells for spatially resolved DMFC studies are developed and optimized. The relative OH and CO coverages on both the anode and cathode were followed using the  XANES technique at different regions of a DMFC during operation at several current levels in dependence on the oxygen flow. For the first time, a very strong “cross-talk” between the anode and cathode is seen with the anode dictating at high O2 flow rate the OH coverage on the cathode. The fuel starvation studies on the single DMFC cell revealed a non-uniform degradation pattern with a high degradation at the methanol inlet and low degradation at methanol outlet. Finally, shape-selected Pt nanoparticles were synthesized using different surfactants like tetradecyltrimethylammonium bromide (TTAB) and polyvinylpyrrolidone (PVP) and tested fuel cell performance. These shape-selected Pt nanoparticles were characterized by TEM and their electrocatalytical activity tested by cyclic voltammetry. High potential cycling of the shape-selected particles revealed a preferential degradation of Pt (100) facets over Pt (110). The TEM analysis of the cycled samples showed predominantly shape-selected particles with very few spherical particles. Finally, supported shape-selected particles showed excellent fuel performance even with low Pt loading. Tuning of the shape of Pt nanoparticles is expected to increase the Pt utilization, i.e. Pt loading can be reduced in the MEA. Further higher durability is expected for the shape-selected particles than the commercial catalyst. Thus by tuning the shape of the Pt nanoparticles, cost reduction and increased durability can be achieved.

Item Type: Ph.D. Thesis
Erschienen: 2012
Creators: Dixon, Ditty
Type of entry: Primary publication
Title: Spatially resolved studies in direct methanol fuel cells
Language: English
Referees: Roth, Prof Christina ; Riedel, Prof Ralf ; Ensinger, Prof Wolfgang ; Claus, Prof Peter
Date: 2 July 2012
Place of Publication: Darmstadt
Refereed: 9 May 2012
URL / URN: urn:nbn:de:tuda-tuprints-30254
Abstract:

The thesis mainly focuses on the spatially resolved characterization of a direct methanol fuel cell. Initially spatially resolved analyses were carried out on an end of life (5000 hrs operated) stack membrane electrode assembly (MEA) using various techniques, like X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive X-ray (EDX) mapping and X-ray absorption spectroscopy (XAS). The fate of the Ru in the direct methanol fuel cell (DMFC) with ageing is carefully analyzed in these studies. It was found that the large oxidized ruthenium fraction in the anode catalyst plays a significant role in particle growth and ruthenium dissolution. Ru was also found in the form of precipitates in the Nafion membrane preferentially at the methanol outlet regions. Ex-situ studies were preceded by in-situ spatially resolved XAS studies. For these, in-situ cells for spatially resolved DMFC studies are developed and optimized. The relative OH and CO coverages on both the anode and cathode were followed using the  XANES technique at different regions of a DMFC during operation at several current levels in dependence on the oxygen flow. For the first time, a very strong “cross-talk” between the anode and cathode is seen with the anode dictating at high O2 flow rate the OH coverage on the cathode. The fuel starvation studies on the single DMFC cell revealed a non-uniform degradation pattern with a high degradation at the methanol inlet and low degradation at methanol outlet. Finally, shape-selected Pt nanoparticles were synthesized using different surfactants like tetradecyltrimethylammonium bromide (TTAB) and polyvinylpyrrolidone (PVP) and tested fuel cell performance. These shape-selected Pt nanoparticles were characterized by TEM and their electrocatalytical activity tested by cyclic voltammetry. High potential cycling of the shape-selected particles revealed a preferential degradation of Pt (100) facets over Pt (110). The TEM analysis of the cycled samples showed predominantly shape-selected particles with very few spherical particles. Finally, supported shape-selected particles showed excellent fuel performance even with low Pt loading. Tuning of the shape of Pt nanoparticles is expected to increase the Pt utilization, i.e. Pt loading can be reduced in the MEA. Further higher durability is expected for the shape-selected particles than the commercial catalyst. Thus by tuning the shape of the Pt nanoparticles, cost reduction and increased durability can be achieved.

Alternative Abstract:
Alternative abstract Language

Diese Doktorarbeit konzentriert sich vorallem auf die dreidimensional aufgelöste Charakterisierung von Direktmethanol-Brennstoffzellen. Zunächst wurden räumlich aufgelöste Analysen am Ende der Lebensdauer von Stapel-Membranelektrodenanordnung mit Hilfe von verschiedenen Techniken, wie zum Beispiel Röntgenbeugung (XRD), Transmissionselektronenmikroskopie (TEM), energiedispersive Röntgenmapping (EDX) und Röntgen-Absorptions-Spektroskopie (XAS) durchgeführt. Der Verbleib des Rutheniums in der Direktmethanol-Brennstoffzelle (DMFC) während der Alterung wurde in diesen Studien sorgfältig analysiert. Es wurde herausgefunden, dass die große, oxidierte Rutheniumfraktion im anodischen Katalysator, einen entscheidende Einfluss bei dem Partikelwachstum und der Rutheniumauflösung hat. Desweiteren wurde Ruthenium auch in Form von Ablagerung, vorzugsweise an den Methanolaustrittsbereichen, in der Nafionmembran gefunden. Ex-situ Studien gingen dreidimensional aufgelöste in-situ XAS-Studien voran. Dafür wurden in-situ Zellen für raumaufgelöste DMFC-Studien entwickelt und optimiert. Der relative OH- und CO-Bedeckungsgrad der Anode und Kathode wurde mit Hilfe von Δμ XANES Techniken, in unterschiedlichen Regionen der DMFC während des Betriebs, bei verschiedenen elektrischen Strömen, in Abhängigkeit vom Sauerstoff-Fluss verfolgt. Zum ersten Mal wurde ein sehr starker „cross-talk“ zwischen Anode und Kathode beobachtet, wobei die Anode bei hohen O2-Flussraten die OH-Bedeckung der Kathode bestimmt. Die Studien zur Brennstoffverknappung bei der einzelnen DMFC-Zelle offenbarten ein uneinheitliches Degradierungsmuster mit einer hohen Degradierung am Methanoleinlass und einer geringen Degradierung am Methanolauslass. Schließlich wurden formspezifische Pt-Nanopartikel, unter Verwendung verschiedener Tenside wie Tetradecyltrimethylammonium Bromid (TTAB) und Polyvinylpyrrolidon (PVP) synthetisiert und auf ihre Leistung in der Brennstoffzelle getestet. Diese formspezifischen Pt-Nanopartikel wurden mittels TEM charakterisiert und die elektrokatalytische Aktivität mittels cyclischer Voltammetrie getestet. Hoch-Potential-Cyclen der formspezifischen Partikel offenbarte eine bevorzugte Degradierung von Pt (100) Flächen gegenüber Pt (110). Die TEM Analyse der cyclischen Proben zeigte in erster Linie formspezifische Partikel mit sehr wenigen kugelförmigen Partikeln. Schließlich zeigten getragene formspezifische Partikel exzellente Kraftstoff-Performance, selbst mit nur geringer Pt-Beladung. Durch Anpassen der Form der Pt-Nanopartikel kann voraussichtlich die Pt-Kapazität noch gesteigert werden, wodurch die Pt-Bedeckung in der MEA reduziert werden kann. Desweiteren wird eine höhere Haltbarkeit für die formspezifischen Partikel im Vergleich zu kommerziellen Katalysatoren erwartet. Demzufolge kann durch Anpassung der Form der Pt-Nanopartikel eine Kostensenkung und eine erhöhte Haltbarkeit erreicht werden.

German
Classification DDC: 500 Science and mathematics > 540 Chemistry
600 Technology, medicine, applied sciences > 660 Chemical engineering
Divisions: 11 Department of Materials and Earth Sciences
Date Deposited: 25 Jul 2012 13:50
Last Modified: 05 Mar 2013 10:02
PPN:
Referees: Roth, Prof Christina ; Riedel, Prof Ralf ; Ensinger, Prof Wolfgang ; Claus, Prof Peter
Refereed / Verteidigung / mdl. Prüfung: 9 May 2012
Export:
Suche nach Titel in: TUfind oder in Google
Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details