Lens, Dieter (2012)
Modeling and Control of Longitudinal Single-Bunch Oscillations in Heavy-Ion Synchrotrons.
TU Darmstadt
Ph.D. Thesis
Abstract
This thesis contributes to the modeling and analysis of longitudinal radio frequency (RF) feedback systems in heavy-ion synchrotrons. Synchrotrons are ring accelerators with a constant reference orbit of the particle beam. They allow the acceleration of particles such as electrons, protons, and heavy ions to highest energies. The desired specifications for beam properties such as the quality, energy, and intensity drive the development of new accelerator components. Among other objectives, the stabilization of the beam before and during the acceleration is desirable to preserve the beam quality. The thesis deals with the modeling of longitudinal coherent oscillations of a bunched beam. The main focus is on the usability of the models for the analysis and design of digital RF feedback loops. The analysis of these models with methods from control theory leads to new insight into the possibilities of RF feedback with regard to the longitudinal beam stabilization. In particular it is shown that the nonlinearity of the beam dynamics plays a major role in the damping of coherent oscillations of higher order. An analysis of a specific RF feedback setup and the comparison with experimental data shows the practical relevance of the models.
Item Type: | Ph.D. Thesis |
---|---|
Erschienen: | 2012 |
Creators: | Lens, Dieter |
Type of entry: | Bibliographie |
Title: | Modeling and Control of Longitudinal Single-Bunch Oscillations in Heavy-Ion Synchrotrons |
Language: | English |
Referees: | Adamy, Prof. Dr.- Jürgen ; Klingbeil, Prof. Dr.- Harald |
Date: | 8 May 2012 |
Place of Publication: | Düsseldorf |
Publisher: | VDI Verlag |
Issue Number: | 1209 |
Series: | Fortschritt-Berichte VDI : Reihe 8, Meß-, Steuerungs- und Regelungstechnik |
Refereed: | 20 January 2012 |
Abstract: | This thesis contributes to the modeling and analysis of longitudinal radio frequency (RF) feedback systems in heavy-ion synchrotrons. Synchrotrons are ring accelerators with a constant reference orbit of the particle beam. They allow the acceleration of particles such as electrons, protons, and heavy ions to highest energies. The desired specifications for beam properties such as the quality, energy, and intensity drive the development of new accelerator components. Among other objectives, the stabilization of the beam before and during the acceleration is desirable to preserve the beam quality. The thesis deals with the modeling of longitudinal coherent oscillations of a bunched beam. The main focus is on the usability of the models for the analysis and design of digital RF feedback loops. The analysis of these models with methods from control theory leads to new insight into the possibilities of RF feedback with regard to the longitudinal beam stabilization. In particular it is shown that the nonlinearity of the beam dynamics plays a major role in the damping of coherent oscillations of higher order. An analysis of a specific RF feedback setup and the comparison with experimental data shows the practical relevance of the models. |
Divisions: | 18 Department of Electrical Engineering and Information Technology 18 Department of Electrical Engineering and Information Technology > Institut für Automatisierungstechnik und Mechatronik 18 Department of Electrical Engineering and Information Technology > Institut für Automatisierungstechnik und Mechatronik > Control Methods and Robotics (from 01.08.2022 renamed Control Methods and Intelligent Systems) 18 Department of Electrical Engineering and Information Technology > Institute of Electromagnetic Field Theory (from 01.01.2019 renamed Institute for Accelerator Science and Electromagnetic Fields) 18 Department of Electrical Engineering and Information Technology > Institute of Electromagnetic Field Theory (from 01.01.2019 renamed Institute for Accelerator Science and Electromagnetic Fields) > Accelerator Technology (until 31.12.2018) |
Date Deposited: | 25 May 2012 14:06 |
Last Modified: | 29 May 2016 21:18 |
PPN: | |
Referees: | Adamy, Prof. Dr.- Jürgen ; Klingbeil, Prof. Dr.- Harald |
Refereed / Verteidigung / mdl. Prüfung: | 20 January 2012 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
![]() |
Send an inquiry |
Options (only for editors)
![]() |
Show editorial Details |