Sebastian, Tutu ; Sterianou, Iasmi ; Reaney, Ian M. ; Leist, Thorsten ; Jo, Wook ; Rödel, Jürgen (2012)
Piezoelectric activity of (1-x)[0.35Bi(Mg1/2Ti1/2)O3-0.3BiFeO3-0.35BiScO3] - xPbTiO3 ceramics as a function of temperature.
In: Journal of Electroceramics, 28 (2-3)
Article
Abstract
The piezoelectric and ferroelectric properties of ceramics in the (1-x)[0.35Bi(Mg1/2Ti1/2)O3-0.3BiFeO3-0.35BiScO3] - xPbTiO3 (0.46 ≤ x ≤ 0.50) solid solution have been studied as a function of temperature with a view to establishing their potential for commercial usage as high TC actuators and sensors. The polarisation, unipolar and bipolar strain, piezoelectric coefficient d33 and coupling factor kp all increased with temperature consistent with softening of extrinsic and intrinsic contributions to piezoactivity as TC is approached. Small signal d33 and kp increased from 328 pm/V and ~0.45 at room temperature to >1100 pm/V and ~0.5, respectively, until depoling occurred at ~400°C, illustrating a significant improvement in operating temperature over PZT (~200°C) and demonstrating great potential for high temperature sensor applications. Bipolar (bi) and unipolar (uni) measurements (large signal, d* 33) normally used to demonstrate potential for actuation, revealed extremely promising values, d* 33(bi) = 940 pm/V and d* 33(uni) = 600 pm/V, up to 180°C, the limit of the experimental apparatus.
Item Type: | Article |
---|---|
Erschienen: | 2012 |
Creators: | Sebastian, Tutu ; Sterianou, Iasmi ; Reaney, Ian M. ; Leist, Thorsten ; Jo, Wook ; Rödel, Jürgen |
Type of entry: | Bibliographie |
Title: | Piezoelectric activity of (1-x)[0.35Bi(Mg1/2Ti1/2)O3-0.3BiFeO3-0.35BiScO3] - xPbTiO3 ceramics as a function of temperature |
Language: | English |
Date: | May 2012 |
Journal or Publication Title: | Journal of Electroceramics |
Volume of the journal: | 28 |
Issue Number: | 2-3 |
URL / URN: | http://dx.doi.org/10.1007/s10832-012-9685-8 |
Abstract: | The piezoelectric and ferroelectric properties of ceramics in the (1-x)[0.35Bi(Mg1/2Ti1/2)O3-0.3BiFeO3-0.35BiScO3] - xPbTiO3 (0.46 ≤ x ≤ 0.50) solid solution have been studied as a function of temperature with a view to establishing their potential for commercial usage as high TC actuators and sensors. The polarisation, unipolar and bipolar strain, piezoelectric coefficient d33 and coupling factor kp all increased with temperature consistent with softening of extrinsic and intrinsic contributions to piezoactivity as TC is approached. Small signal d33 and kp increased from 328 pm/V and ~0.45 at room temperature to >1100 pm/V and ~0.5, respectively, until depoling occurred at ~400°C, illustrating a significant improvement in operating temperature over PZT (~200°C) and demonstrating great potential for high temperature sensor applications. Bipolar (bi) and unipolar (uni) measurements (large signal, d* 33) normally used to demonstrate potential for actuation, revealed extremely promising values, d* 33(bi) = 940 pm/V and d* 33(uni) = 600 pm/V, up to 180°C, the limit of the experimental apparatus. |
Uncontrolled Keywords: | Piezoelectrics – High curie point – Temperature stability – High temperature actuators |
Identification Number: | doi:10.1007/s10832-012-9685-8 |
Divisions: | 11 Department of Materials and Earth Sciences > Material Science > Nonmetallic-Inorganic Materials 11 Department of Materials and Earth Sciences > Material Science 11 Department of Materials and Earth Sciences |
Date Deposited: | 02 May 2012 08:56 |
Last Modified: | 05 Mar 2013 10:00 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
![]() |
Send an inquiry |
Options (only for editors)
![]() |
Show editorial Details |