TU Darmstadt / ULB / TUbiblio

Advanced direction-of-arrival estimation and beamforming techniques for multiple antenna systems

Rübsamen, Michael (2011)
Advanced direction-of-arrival estimation and beamforming techniques for multiple antenna systems.
Technische Universität Darmstadt
Ph.D. Thesis, Primary publication

Abstract

In this thesis, we develop advanced techniques and concepts for direction-of-arrival (DOA) estimation and beamforming. We study narrowband high-resolution search-free DOA estimation methods that can be applied in the case of arbitrary array geometries. We derive an asymptotic first-order performance analysis of the popular manifold separation (MS) and interpolated root-MUSIC techniques, which takes into account the finite sample effect as well as manifold approximation errors. Moreover, we propose two rooting-based DOA estimators for arbitrary arrays. It is demonstrated by means of computer simulations that the proposed estimators provide attractive tradeoffs between DOA estimation performance and computational complexity. We also develop a novel array geometry design for azimuthal DOA estimation. The proposed array design stems from the design of minimum redundancy arrays (MRAs), but the sensors are not required to lie on a uniform grid. The proposed array design facilitates a novel subspace-based DOA estimation technique, which allows estimating the DOAs of more uncorrelated sources than there are sensors, using only second-order statistics of the received data. Furthermore, we study robust adaptive beamformers for narrowband and broadband signals. In the narrowband case, we show that the popular beamformer based on one-dimensional (1D) covariance fitting leads to inherently non-optimum results in the presence of interferers. To mitigate the detrimental effect of interferers, we extend the 1D covariance fitting approach to multi-dimensional (MD) covariance fitting, modeling the source steering vectors by means of uncertainty sets. The proposed MD covariance fitting approach leads to a non-convex optimization problem. We develop a convex approximation of this problem, which can be solved, for example, by means of the logarithmic barrier method. The complexity required to compute the barrier function and its first- and second-order derivatives is derived. Simulation results show that the proposed beamformer based on MD covariance fitting achieves improved performance as compared to the state-of-the-art narrowband beamformers in scenarios with large sample support. In the broadband case, we develop two finite impulse response (FIR) beamformers based on worst-case output power minimization, which use different constraints to maintain the desired signal. These constraints strictly limit the sensitivity to signal steering vector estimation errors. Additionally, these constraints lead to an incentive for a low sensitivity if the true signal steering vectors lie within the presumed uncertainty sets. This incentive becomes stronger with increasing signal powers. We study the relation between the proposed FIR beamformers and the norm-bounded broadband minimum variance distortionless response (MVDR) beamformer. Furthermore, we develop the discrete Fourier transform (DFT) beamformer counterparts of the proposed FIR beamformers. The proposed FIR beamformers control the frequency response towards the desired signal only for a finite set of frequencies. Based on the theory of positive trigonometric polynomials, we also develop a modified version of the first proposed FIR beamformer, which avoids the frequency discretization and associated errors. Our simulation results verify that the proposed beamformers are attractive alternatives to the current state-of-the-art broadband beamformers. In particular, the proposed FIR beamformers provide a significantly improved capability to suppress interferers and noise as compared to previous FIR beamformers based on worst-case output power minimization.

Item Type: Ph.D. Thesis
Erschienen: 2011
Creators: Rübsamen, Michael
Type of entry: Primary publication
Title: Advanced direction-of-arrival estimation and beamforming techniques for multiple antenna systems
Language: English
Referees: Gershman, Professor Alex ; Sidiropoulos, Professor Nikos ; Zoubir, Professor Abdelhak ; Schürr, Professor Andy
Date: 22 June 2011
Refereed: 19 May 2011
URL / URN: urn:nbn:de:tuda-tuprints-26357
Abstract:

In this thesis, we develop advanced techniques and concepts for direction-of-arrival (DOA) estimation and beamforming. We study narrowband high-resolution search-free DOA estimation methods that can be applied in the case of arbitrary array geometries. We derive an asymptotic first-order performance analysis of the popular manifold separation (MS) and interpolated root-MUSIC techniques, which takes into account the finite sample effect as well as manifold approximation errors. Moreover, we propose two rooting-based DOA estimators for arbitrary arrays. It is demonstrated by means of computer simulations that the proposed estimators provide attractive tradeoffs between DOA estimation performance and computational complexity. We also develop a novel array geometry design for azimuthal DOA estimation. The proposed array design stems from the design of minimum redundancy arrays (MRAs), but the sensors are not required to lie on a uniform grid. The proposed array design facilitates a novel subspace-based DOA estimation technique, which allows estimating the DOAs of more uncorrelated sources than there are sensors, using only second-order statistics of the received data. Furthermore, we study robust adaptive beamformers for narrowband and broadband signals. In the narrowband case, we show that the popular beamformer based on one-dimensional (1D) covariance fitting leads to inherently non-optimum results in the presence of interferers. To mitigate the detrimental effect of interferers, we extend the 1D covariance fitting approach to multi-dimensional (MD) covariance fitting, modeling the source steering vectors by means of uncertainty sets. The proposed MD covariance fitting approach leads to a non-convex optimization problem. We develop a convex approximation of this problem, which can be solved, for example, by means of the logarithmic barrier method. The complexity required to compute the barrier function and its first- and second-order derivatives is derived. Simulation results show that the proposed beamformer based on MD covariance fitting achieves improved performance as compared to the state-of-the-art narrowband beamformers in scenarios with large sample support. In the broadband case, we develop two finite impulse response (FIR) beamformers based on worst-case output power minimization, which use different constraints to maintain the desired signal. These constraints strictly limit the sensitivity to signal steering vector estimation errors. Additionally, these constraints lead to an incentive for a low sensitivity if the true signal steering vectors lie within the presumed uncertainty sets. This incentive becomes stronger with increasing signal powers. We study the relation between the proposed FIR beamformers and the norm-bounded broadband minimum variance distortionless response (MVDR) beamformer. Furthermore, we develop the discrete Fourier transform (DFT) beamformer counterparts of the proposed FIR beamformers. The proposed FIR beamformers control the frequency response towards the desired signal only for a finite set of frequencies. Based on the theory of positive trigonometric polynomials, we also develop a modified version of the first proposed FIR beamformer, which avoids the frequency discretization and associated errors. Our simulation results verify that the proposed beamformers are attractive alternatives to the current state-of-the-art broadband beamformers. In particular, the proposed FIR beamformers provide a significantly improved capability to suppress interferers and noise as compared to previous FIR beamformers based on worst-case output power minimization.

Alternative Abstract:
Alternative abstract Language

Diese Dissertation behandelt neue Verfahren und Konzepte für Richtungsschätzung und Beamforming. Wir untersuchen hochauflösende Richtungsschätzverfahren, die ohne spektrale Suche auskommen und für beliebige Arraygeometrien anwendbar sind. Wir leiten eine Näherung erster Ordnung für die asymptotische Performance der Array Interpolation und Manifold Separation (MS) Schätzer her. Dabei berücksichtigen wir sowohl Fehler aufgrund der endlichen Zahl von Abtastvektoren als auch Approximationsfehler für die Array Mannigfaltigkeit. Desweiteren entwickeln wir zwei neue Richtungsschätzer für beliebige Arraygeometrien. Unsere Simulationsergebnisse zeigen, dass diese Schätzer gute Kompromisse zwischen Schätzgenauigkeit und Rechenkomplexität realisieren. Außerdem entwickeln wir ein neues Arraygeometrie-Design für azimutale Richtungsschätzung. Das vorgeschlagene Arraygeometrie-Design basiert auf dem Design von Minimum Redundancy Arrays (MRAs). Allerdings ist die Sensoranordnung nicht auf ein kartesisches Gitter beschränkt. Das vorgeschlagene Arraygeometrie-Design ermöglicht ein neues unterraumbasiertes Richtungsschätzverfahren, mit dem die Richtungen von mehr Quellen geschätzt werden können als es Sensoren gibt. Darüber hinaus untersuchen wir robuste adaptive Beamformer für schmalbandige und breitbandige Signale. Für den weitverbreiteten schmalbandigen Beamformer basierend auf einer eindimensionalen Anpassung an die Kovarianz-Matrix zeigen wir, dass Interferenzen zu inhärent fehlerhaften Ergebnissen führen. Um den nachteiligen Effekt der Interferenzen zu reduzieren, erweitern wir die eindimensionale Anpassung an die Kovarianz-Matrix auf eine mehrdimensionale Anpassung. Dabei modellieren wir die Steuerungsvektoren der Interferenzen mittels Fehlertoleranzmengen. Unser mehrdimensionaler Ansatz führt zu einem nichtkonvexen Optimierungsproblem. Wir leiten eine konvexe Näherung für dieses Problem her, welche z.B. mit dem logarithmischen Barriere Verfahren gelöst werden kann. Wir untersuchen die Rechenkomplexität und zeigen anhand von Simulationen, dass das vorgeschlagene mehrdimensionale Anpassungsverfahren zu deutlichen Performancegewinnen gegenüber den besten bekannten Beamformern führt, wenn genügend Abtastvektoren zur Schätzung der Kovarianz-Matrix zur Verfügung stehen. Für breitbandige Signale entwickeln wir zwei Finite Impulse Response (FIR) Beamformer basierend auf der Minimierung der Worst-Case Ausgangsleistung. Die vorgeschlagenen Beamformer verwenden unterschiedliche Nebenbedingungen, um die Unterdrückung und Verzerrung des gewünschten Signals zu vermeiden. Wir zeigen, dass diese Nebenbedingungen die Sensitivität der Beamformer strikt begrenzen. Falls die Signal-Steuerungsvektoren in den dafür angenommenen Fehlertoleranzmengen liegen, führen die Nebenbedingungen der vorgeschlagenen FIR Beamformer zusätzlich zu einem Anreiz für eine geringe Sensitivität. Dieser Anreiz ist umso stärker, je höher die Leistung des gewünschten Signals ist. Wir untersuchen die Beziehung der vorgeschlagenen FIR Beamformer zu dem normbegrenzten Minimum Variance Distortionless Response (MVDR) Beamformer. Zudem entwickeln und untersuchen wir die auf der Diskreten Fourier Transformation (DFT) basierenden Gegenstücke der vorgeschlagenen FIR Beamformer. Die vorgeschlagenen FIR Beamformer kontrollieren die Frequenzantwort für das gewünschte Signal nur für eine diskrete Menge von Frequenzen. Unter Verwendung der Theorie positiver trigonometrischer Polynome modifizieren wir den zuerst vorgeschlagenen FIR Beamformer, so dass die Frequenzdiskretisierung und die damit verbundenen Fehler vermieden werden können. Unsere Simulationsergebnisse zeigen, dass die vorgeschlagenen Beamformer zu den besten bekannten breitbandigen Beamformern gehören. Insbesondere führen die vorgeschlagenen FIR Beamformer zu einer deutlich verbesserten Interferenz- und Rauschunterdrückung als bisher bekannte FIR Beamformer basierend auf der Minimierung der Worst-Case Ausgangsleistung.

German
Alternative keywords:
Alternative keywordsLanguage
Direction-of-arrival estimation, adaptive beamforming, array signal processing, search-free subspace-based DOA estimators, non-uniform sensor arrays, Fourier-domain root-MUSIC, sparse arrays, azimuthal DOA estimation, minimum redundancy arrays, covariance augmentation technique, robust beamforming, sensitivity, norm-constraints, worst-case output power minimization, multi-dimensional covariance fitting, FIR beamformers, DFT beamformers, Ruebsamen, RubsamenEnglish
Classification DDC: 600 Technology, medicine, applied sciences > 620 Engineering and machine engineering
Divisions: 18 Department of Electrical Engineering and Information Technology
18 Department of Electrical Engineering and Information Technology > Institute for Telecommunications > Communication Systems
18 Department of Electrical Engineering and Information Technology > Institute for Telecommunications
Date Deposited: 27 Jun 2011 07:19
Last Modified: 05 Mar 2013 09:50
PPN:
Referees: Gershman, Professor Alex ; Sidiropoulos, Professor Nikos ; Zoubir, Professor Abdelhak ; Schürr, Professor Andy
Refereed / Verteidigung / mdl. Prüfung: 19 May 2011
Alternative keywords:
Alternative keywordsLanguage
Direction-of-arrival estimation, adaptive beamforming, array signal processing, search-free subspace-based DOA estimators, non-uniform sensor arrays, Fourier-domain root-MUSIC, sparse arrays, azimuthal DOA estimation, minimum redundancy arrays, covariance augmentation technique, robust beamforming, sensitivity, norm-constraints, worst-case output power minimization, multi-dimensional covariance fitting, FIR beamformers, DFT beamformers, Ruebsamen, RubsamenEnglish
Export:
Suche nach Titel in: TUfind oder in Google
Send an inquiry Send an inquiry

Options (only for editors)
Show editorial Details Show editorial Details