Abstract
Lead-free piezoelectric ceramics, (1−x−y)Bi0.5Na0.5TiO3–xBaTiO3–yK0.5Na0.5NbO3 (0.05 <= x <= 0.07 and 0.01 <= y <= 0.03), have been synthesized by a conventional solid state sintering method. The room temperature ferroelectric and piezoelectric properties of these ceramics were studied. Based on the measured properties, the ceramics were categorized into two groups: group I compositions having dominant ferroelectric order and group II compositions displaying mixed ferroelectric and antiferroelectric properties at room temperature. A composition from group II near the boundary between these two groups exhibited a strain as large as ∼ 0.45% at an electric field of 8 kV/mm. Polarization in this composition was not stable in that the piezoelectric coefficient d33 at zero electric field was only about 30 pm/V. The converse piezoelectric response becomes weaker when the composition deviated from the boundary between the groups toward either the ferroelectric or antiferroelectric compositions. These results were rationalized based on a field induced antiferroelectric-ferroelectric phase transition.
Item Type: |
Article
|
Erschienen: |
2008 |
Creators: |
Zhang, Shan-Tao ; Kounga, Alain Brice ; Aulbach, Emil ; Granzow, Torsten ; Jo, Wook ; Kleebe, Hans-Joachim ; Rödel, Jürgen |
Type of entry: |
Bibliographie |
Title: |
Lead-free piezoceramics with giant strain in the system
Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3.
I. Structure and room temperature properties |
Language: |
English |
Date: |
February 2008 |
Journal or Publication Title: |
Journal of Applied Physics |
Volume of the journal: |
103 |
Issue Number: |
3 |
DOI: |
10.1063/1.2838472 |
URL / URN: |
https://aip.scitation.org/doi/10.1063/1.2838472 |
Abstract: |
Lead-free piezoelectric ceramics, (1−x−y)Bi0.5Na0.5TiO3–xBaTiO3–yK0.5Na0.5NbO3 (0.05 <= x <= 0.07 and 0.01 <= y <= 0.03), have been synthesized by a conventional solid state sintering method. The room temperature ferroelectric and piezoelectric properties of these ceramics were studied. Based on the measured properties, the ceramics were categorized into two groups: group I compositions having dominant ferroelectric order and group II compositions displaying mixed ferroelectric and antiferroelectric properties at room temperature. A composition from group II near the boundary between these two groups exhibited a strain as large as ∼ 0.45% at an electric field of 8 kV/mm. Polarization in this composition was not stable in that the piezoelectric coefficient d33 at zero electric field was only about 30 pm/V. The converse piezoelectric response becomes weaker when the composition deviated from the boundary between the groups toward either the ferroelectric or antiferroelectric compositions. These results were rationalized based on a field induced antiferroelectric-ferroelectric phase transition. |
Uncontrolled Keywords: |
Barium compounds, bismuth compounds, ferroelectric ceramics, ferroelectric transitions, piezoceramics, potassium compounds, sintering, sodium compounds |
Additional Information: |
SFB 595 Cooperation A1, B3, D1 |
Divisions: |
11 Department of Materials and Earth Sciences 11 Department of Materials and Earth Sciences > Earth Science 11 Department of Materials and Earth Sciences > Earth Science > Geo-Material-Science 11 Department of Materials and Earth Sciences > Material Science 11 Department of Materials and Earth Sciences > Material Science > Nonmetallic-Inorganic Materials DFG-Collaborative Research Centres (incl. Transregio) DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres Zentrale Einrichtungen DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue > A - Synthesis DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue > A - Synthesis > Subproject A1: Manufacturing of ceramic, textured actuators with high strain DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue > B - Characterisation DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue > B - Characterisation > Subproject B3: Structure Characterization of Piezoelectric Ceramics With Respect to Electrical Fatigue DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue > D - Component properties DFG-Collaborative Research Centres (incl. Transregio) > Collaborative Research Centres > CRC 595: Electrical fatigue > D - Component properties > Subproject D1: Mesoscopic and macroscopic fatigue in doped ferroelectric ceramics |
Date Deposited: |
14 Jun 2011 12:06 |
Last Modified: |
19 Aug 2021 13:01 |
PPN: |
|
Export: |
|
Suche nach Titel in: |
TUfind oder in Google |
 |
Send an inquiry |
Options (only for editors)
 |
Show editorial Details |